Rampion 2 Wind Farm Category 6: Environmental Statement Volume 4, Appendix 21.1: Baseline sound report (clean)

Date: January 2024

 Revision BDocument Reference: 6.4.21.1
Pursuant to: APFP Regulation 5 (2) (a) Ecodoc number: 004866511-02

Document revisions

| Revision | Date | Status/reason for issue | Author | Checked
 by | Approved
 by |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| A | $04 / 08 / 2023$ | Final for DCO Application | WSP | RED | RED |
| B | $16 / 01 / 2024$ | Additional survey data added;
 Corrections to receptor
 numbers | WSP | RED | RED |

Contents

1. Introduction 3
1.1 Background 3
1.2 Purpose of this Appendix 3
2. Terminology 5
3. Technical guidance 7
4. Methodology 11
4.1 Agreed methodology 11
Identification of receptor locations 11
4.2 Details of monitoring undertaken 25
Data collection methods 25
4.3 Data collection locations 26
Construction Phase 26
Operation and maintenance phase 39
5. Results 43
5.1 Summary 43
Construction 43
Operation and maintenance 45
6. Summary 57
7. Glossary of terms and abbreviations 61
8. References 65
List of Tables
Table 3-1 Planning Policy, Technical Standards, and Guidance 7
Table 4-1 NSRs construction 13
Table 4-2 NSRs operational (substation) 25
Table 4-3 24-hour monitoring locations 29
Table 4-4 1-hour monitoring locations 36
Table 4-5 Time monitored at each 24-hr monitoring location 38
Table 4-6 Long-term monitoring locations (operation) 39
Table 4-7 Time monitored at each monitoring location (operation) 41
Table 5-1 Summary of assessment periods 43
Table 5-2 Summary of 24-hr ambient noise levels (logarithmic average) 43
Table 5-3 Summary of long-term ambient noise levels (logarithmic average) 45
Table 5-4 Summary of statistical background sound levels 47
Table 6-1 Summary of construction baseline ambient sound levels (logarithmic average) 57
Table 6-2 Summary of operational baseline ambient sound levels (logarithmic average) 59
Table 6-3 Summary of operational baseline background sound levels (median) 59
Table 7-1 Glossary of terms and abbreviations 61
List of Graphics
Graphic 5-1 OP-NML1 - Daytime 48
Graphic 5-2 OP-NML1 - Night-time 49
Graphic 5-3 OP-NML2 - Daytime 50
Graphic 5-4 OP-NML2 - Night-time 51
Graphic 5-5 OP-NML3 - Daytime 52
Graphic 5-6 OP-NML3 - Night-time 53
Graphic 5-7 OP-NML4 - Daytime 54
Graphic 5-8 OP-NML4 - Night-time 55
List of Annexes
Annex A Calibration Certificates
Annex B Baseline Monitoring Results

1. Introduction

1.1 Background

1.1.1 Rampion Extension Development Limited (RED) (the 'Applicant') is in the process of submitting a Development Consent Order (DCO) application for the Rampion 2 offshore wind farm.
1.1.2 Rampion 2 comprises of new offshore and onshore energy infrastructure. A summary description of the Proposed Development is provided in Chapter 21: Noise and vibration, Volume 2 of the ES (Document Reference: 6.2.21) which this Appendix supports, and a more detailed description is provided in ES Chapter 4: The Proposed Development, Volume 2 of the ES (Document Reference: 6.2.4)

1.2 Purpose of this Appendix

1.2.1 The purpose of this Appendix is to present the results of the baseline sound level surveys that were conducted between 06 - 20 February 2023, 27 - 29 March 2023, 3 - 4 May 2023, and 15 - 17 November 2023. Due to land access constraints prior to the DCO submission, the fourth set of surveys (15-17 November 2023) were undertaken post-DCO Application submission. Further detail on the application of the data obtained post-DCO Application submission is provided in Section 4.3.

The purpose of the baseline sound level surveys was to determine robust and accurate baseline data to inform the noise assessment within the Environmental Statement (ES) accompanying the DCO Application.
1.2.3 There is potential for noise effects during the construction, operation and maintenance and decommissioning phases of the Proposed Development. This Appendix sets out the measured baseline data used to inform the assessment of likely significant noise effects.
1.2.4 All personnel contributing to the baseline surveys, analysis of data and the preparation of this Appendix were appropriately qualified.

This Appendix includes the following sections:

- Section 1: Introduction which outlines an overview of the Appendix;
- Section 2: Terminology which outlines relevant terminology pertaining to noise;
- Section 3: Technical guidance which presents technical guidance relevant to the sound and noise baseline;
- Section 4: Methodology which outlines the methodology adopted in data collection and the categories of noise receptors where baseline information is required;
- Section 5: Results which outlines the specific baseline results for the Proposed Development, namely the results of the ambient and background sound and noise monitoring at several locations;
- Section 6: Summary;
- Section 7: Glossary of terms and abbreviations;
- Section 8: References
- Annex A: Calibration certificates;
- Annex B: Baseline monitoring results.

2. Terminology

2.1.1 Throughout this Appendix, the term 'noise' is used to describe an 'unwanted sound' and is generally applied when describing assessment methodologies or the predictions of emissions at receptors for the purpose of assessment. In keeping with relevant policy, standards, and guidance, calculated or measured emissions associated with the existing acoustic environment (such as ambient or background levels), and not associated with road or rail traffic, will be described as 'sound'.
2.1.2 Whilst it is recognised that road or rail traffic noise is not always considered 'unwanted', the term 'noise' will be applied when describing their measurement.
2.1.3 The term 'noise' refers to airborne noise and 'vibration' to ground-borne vibration. For all other terminology, the full technical description is used, such as 'groundborne noise'. Additional technical terminology relevant to the noise assessment is presented in Section 7.

Page intentionally blank

3. Technical guidance

3.1.1 For the purposes of defining the scope of the baseline including the methodology for the sound and noise surveys for the Project, the planning policy, guidance, and standards listed in Table 3-1 are of specific relevance.

Table 3-1 Planning Policy, Technical Standards, and Guidance

Guidance reference

National Planning Policy Framework (NPPF) (Ministry of Housing, Communities and Local Government, 2021)

Summary

The NPPF advises (para 185) that significant adverse impacts on health and the quality of life as a result of noise from new developments should be avoided. It also advises that other adverse impacts on health and quality of life arising from noise from new developments should be mitigated and reduced to a minimum.

Paragraph 174 of the NPPF states that planning systems should contribute to and enhance the natural and local environment by (amongst other considerations): "Preventing new and existing development from contributing to, being put at unacceptable risk from, or being adversely affected by, unacceptable levels of soil, air, water or noise pollution or land instability.".

The NPPF further states in Paragraph 185 that "Planning policies and decisions should also ensure that new development is appropriate for its location taking into account the likely effects (including cumulative effects) of pollution on health, living conditions and the natural environment, as well as the potential sensitivity of the site or the wider area to impacts that could arise from the development. In doing so they should:
a) mitigate and reduce to a minimum, potential adverse impacts resulting from noise from new development - and avoid noise giving rise to significant adverse impacts on health and the quality of life; and
b) identify and protect tranquil areas which have remained relatively undisturbed by noise and are

Guidance reference

Summary

prized for their recreational and amenity value for this reason..."

Paragraph 187 advises that "Planning policies and decisions should ensure that new development can be integrated effectively with existing businesses and community facilities (such as places of worship, pubs, music venues and sports clubs). Existing businesses and facilities should not have unreasonable restrictions placed on them as a result of development permitted after they were established. Where the operation of an existing business or community facility could have significant adverse effects on new development (including changes of use) in its vicinity, the applicant (or 'agent of change') should be required to provide suitable mitigation before the development has been completed." This should be taken into account when considering whether the Project is an acceptable use of land.

BS 5228-1:2009 + A1:2014 Code of practice for noise and vibration control on construction and open sites. Part 1: Noise (British Standards Institution (BSI), 2014)

Transport and Road Research Laboratory (1986) Research Project 53 - Ground vibration caused by civil engineering works

Design Manual for Roads and Bridges LA111: Noise and vibration (Highways England, 2020)

Calculation of Road Traffic Noise (CRTN) (Her Majesty's Stationary Office (HMSO), 1988)

Transport and Road Research Laboratory (2002) - Converting the UK traffic noise index LA10, 18hr to EU noise indices for noise mapping

Provides a recommended scope for construction and demolition noise assessment (the ABC Method) presented in Annex E, and also gives example threshold values for potential significant effects at noise sensitive receptors based upon the results of ambient sound monitoring.

Guidance into factors affecting the input and propagation of ground vibration from civil engineering works.

Presents a methodology for determining impacts upon noise sensitive receptors from changes in road traffic noise due to road projects.

Provides a calculation methodology for road traffic noise.

A method for converting the road traffic noise indexes described in CRTN to produce outputs in the form of European Union indices, in particular TRL Method 3 which outlines the

Guidance reference

Summary

conversion of the La10,18hr noise indices to the $L_{\text {Aeq, } 16 h r}$ and LAeq,8hr indexes.

Calculation of railway noise source terms for Calculation of Railway Noise 1995 (Department for Transport (1995)

BS 4142:2014 + A1:2019 Methods for rating and assessing industrial and commercial sound (BSI, 2019)

Noise and vibration management: environmental permits (Environment Agency, 2022)

International Standards

 Organization (ISO) 9613-2:1996 Acoustics - Attenuation of sound during propagation outdoors. Part 2: General method of calculation (ISO, 1996)Guidelines for Environmental Noise Impact Assessment (Institute of Environmental Management and Assessment (IEMA), 2014)

BS 7445-1:2003 Description and measurement of environmental noise. Part 1: Guide to quantities and procedures (BSI, 2003)

A methodology for obtaining and calculating rail traffic noise indexes that is additional to the methodology set out within CRN.

BS 4142:2014 + A1:2019 describes methods for rating and assessing sound of an industrial nature (using outdoor sound levels), such as from factories, industrial premises, or fixed installations affecting people who might be inside or outside a dwelling.

BS 4142:2014 + A1:2019 does not apply to noise associated with the passage of vehicles on public roads and railway systems.

Describes the principles of noise prediction and measurement, in addition to suggested methods of noise control. The guidance recommends that whenever possible, an assessment of noise should follow a recognised method of assessment, such as the methods presented within the relevant and current British Standards e.g. BS 4142:2014 + A1:2019.

Defines a method for calculating the attenuation of sound during propagation outdoors in order to predict the levels of environmental noise at distances from a source.

Presents guidelines on how the assessment of noise effects should be presented within the EIA process. The IEMA guidelines cover aspects such as scoping, baseline, prediction, and example definitions of significance criteria.

Provides guidance on the measurement and description of environmental noise.

Provides specifications for different sound level meters.

BS EN 61672-1:2013
Electroacoustics - Sound level

Guidance reference	Summary
meters. Part 1: Specifications (BSI, 2013)	
BS EN 60942:2018	Provides specifications for different sound calibrators.
Electroacoustics - Sound calibrators (BSI, 2018)	

4. Methodology

4.1 Agreed methodology

4.1.1 The methodology and monitoring locations were agreed through non-statutory consultation with Environmental Health Officers from the following Local
Authorities:

- Arun District Council;
- Horsham District Council;
- Mid-Sussex District Council;
- South downs National Park Authority; and
- West Sussex County Council.
4.1.2 Further detail on the relevant assessment methodologies agreed with each Local

Authority are provided in Section 21.3 of Chapter 21: Noise and vibration, Volume 2 of the ES (Document Reference: 6.2.21).

Identification of receptor locations

4.1.3 Noise monitoring locations were selected to be representative of Noise Sensitive Receptors (NSRs) with the greatest potential to be affected by noise from the construction and operation of the Proposed Development. The NSRs and noise monitoring locations were identified using aerial imagery, Ordnance Survey (OS) mapping and local knowledge.

Chapter 21: Noise and vibration, Volume 2 of the ES (Document Reference: 6.2.21) identifies NSRs where baseline levels are required and have been taken forward when selecting monitoring locations. The receptors for temporary construction activity, and operational and maintenance activity are shown in Table 4-1 and Table 4-2 respectively. Figure 21.2, Volume 3 of the ES (Document Reference: 6.3.21) presents all the receptors within OS mapping.

Page intentionally blank

Table 4-1 NSRs construction

NSR Reference	Receptor Address / Location Description	British Grid Reference	
HDD01-N	CROOKTHORN BYRE, BROOKPIT LANE, BN17 5QU	\mathbf{Y}	
HDD01-S	THE MILL, CLIMPING STREET, BN17 5RN	500868	101435
HDD01A-S	THE MILL, CLIMPING STREET, BN17 5RN	501530	101241
HDD02-S	THE MILL, CLIMPING STREET, BN17 5RN	501530	101241
HDD03-S	FLAT 1, MARDEN HOUSE, HIGHFIELD, BN17 7EU	501530	101241
HDD03-E	8, BENJAMIN GRAY DRIVE, BN17 7FA	501768	103236
HDD03-S Industrial	UNIT 9, THORGATE ROAD, BN17 7LU	501605	103387
HDD03-NE	6, BONIFACE AVENUE, BN17 7AD	501722	103168
HDD04-E	BROOK BARN HOUSE, COURTWICK LANE, BN17 7PE	501550	103622
(Farm building)	32, BONIFACE AVENUE, BN17 7AD	501465	104053
HDD04-S	KEYMERS, ORCHARD LANE, BN17 7GL	501501	103883
HDD05-N		502603	104613

$\begin{array}{l}\text { NSR } \\ \text { Reference }\end{array}$	Receptor Address / Location Description	British Grid Reference	
X			

| NSR
 Reference | Receptor Address / Location Description | British Grid Reference |
| :--- | :--- | :--- | :--- |
| H | | |

NSR Reference	Receptor Address / Location Description	British Grid Reference	
HDD19-N (Church)	1 LONGBACK COTTAGES, WATER LANE, BN44 3DX	Y	
HDD19-N	1 LONGBACK COTTAGES, WATER LANE, BN44 3DX	514505	113903
HDD19-S	BUNCTON MANOR FARM, STEYNING ROAD, BN44 3DD	514505	113903
HDD19-E	SCHOOL HOUSE, STEYNING ROAD, BN44 3DD	514567	113645
HDD19-SW	BUTCHERS FARM, WATER LANE, BN44 3DW	514986	113752
HDD20-N	BEGGARS BUSH, SPITHANDLE LANE, BN44 3DY	514361	113668
HDD20-W	DOVES FARM, SPITHANDLE LANE, BN44 3DY	517214	115249
HDD21-E	SMALLWOOD HOUSE, STEYNING ROAD, BN44 3AN	516925	114860
HDD21-N	SOUTHVIEW, WELLENS FARM, STEYNING ROAD, BN44 3AN	518000	115975
HDD21-S	BERGEN-OP-ZOOM, HORSEBRIDGE COMMON, BN44 3AL	518028	115249
HDD22-N	MERRION HOUSE, BINES GREEN, RH13 8EH	518647	117088
HDD22-S	1 MERRION FARM COTTAGES, BINES GREEN, RH13 8EH	518751	116783
HDD22-W	LONG COTTAGE, BINES GREEN, RH13 8EH	518457	518647
HDD23-S	MERRION HOUSE, BINES GREEN, RH13 8EH	116912	

| $\begin{array}{l}\text { NSR } \\ \text { Reference }\end{array}$ | Receptor Address / Location Description | British Grid Reference |
| :--- | :--- | :--- | :--- |
| X | | |$)$

| $\begin{array}{l}\text { NSR } \\ \text { Reference }\end{array}$ | Receptor Address / Location Description | British Grid Reference |
| :--- | :--- | :--- | :--- |
| X | | |$)$

NSR Reference	Receptor Address / Location Description	British Grid Reference	
A			

NSR Reference	Receptor Address / Location Description	British Grid Reference	
AA12-E	WARREN HILL LODGE, STORRINGTON ROAD, RH20 4AQ	511780	\mathbf{Y}
AA12-W	ROWDELL LODGE, STORRINGTON ROAD, RH20 4AG	511333	113486
AA12-N	BRADBURY COURT, EAST CLAYTON FARM, STORRINGTON ROAD, RH20 4AG	511437	113520
AA14-W	OLD SCHOOL HOUSE, STEYNING ROAD, BN44 3DD	113585	
AA14-S	PAYGATE LODGE, STEYNING ROAD, BN44 3DD	515009	113762
AA14-W	THE FORSTAL, STEYNING ROAD, BN44 3DD	515273	113484
AA16-E	1, LILIAN TERRACE, BN18 9QF	515322	113549
AA18-W	DOVER LANE, BN18 9PX	505367	105696
Hospice)	THE DECOY, DECOY LANE, ARUNDEL ROAD, BN18 9QA	505966	105833
AA18-S	1 ANGMERING PARK COTTAGES, ANGMERING PARK, BN16	505857	105393
4EX	A06 MICHELGROVE COTTAGES, MICHELGROVE, BN13 3XQ	506194	105787
AA22-S	THE BUNGALOW, MICHELGROVE, BN13 3XQ	508182	108358

| NSR
 Reference | Receptor Address / Location Description | British Grid Reference |
| :--- | :--- | :--- | :--- |
| X | | |

NSR Reference	Receptor Address / Location Description	British Grid Reference	
		X	Y
AA32-N (a)	LEE FARM HOUSE, BN13 3XJ	507369	110399
AA32-N (b)	2 LEE FARM COTTAGES, BN13 3XJ	507637	110422
AA32-W	HIGHLAND COTTAGE, ANGMERING PARK, BN16 4EX	506738	108930
AA32-E	HIGHLAND COTTAGE, ANGMERING PARK, BN16 4EX	506738	108930
AA33-E	185, SWILLAGE LANE, BN13 3TX	507167	106117
AA33-W	NORFOLK HOUSE, SWILLAGE LANE, BN13 3TX	507167	106317
Compound 1 S	BARN END, BROOKPIT LANE, BN17 5QT	500839	101954
Compound 1 E	4, CLIMPING PARK, BOGNOR ROAD, BN17 5DW	500916	102127
Compound 1 - N	FIELD PLACE, CHURCH LANE, BN17 5RR	500394	102246
Compound 1 W	5, CROPTHORNE DRIVE, BN17 5GG	500117	102153
Compound 1 - W (Village Hall)	CROOKTHORN LANE, BN17 5SN	500569	102019

| NSR
 Reference | Receptor Address / Location Description | British Grid Reference |
| :--- | :--- | :--- | :--- |
| X | | |

NSR Reference	Receptor Address / Location Description	British Grid Reference	
		X	Y
Compound 3 S	BANKFIELD GRANGE, KINGS LANE, HORSHAM, RH13 8BD	522506	122023
Compound 4 E	SOUTHLANDS, KENT STREET, RH13 8BA	523197	122655
Compound 4 - N	BARNFIELD LODGE, PICTS LANE, RH13 8AT	523335	123066
Compound 4 NW	APPLECROSS, BOLNEY ROAD, RH13 8AZ	522877	122997
Compound 4 W	OAKENDENE MANOR, BOLNEY ROAD, RH13 8AZ	522766	122607
SS1-NE	SOUTHLANDS, KENT STREET, RH13 8BA	523197	122655
SS2-SE	WESTRIDGE, KENT STREET, RH13 8BB	523226	121884
SS3-SW	BANKFIELD GRANGE, KINGS LANE, HORSHAM, RH13 8BD	522506	122023
SS4-NW	OAKENDENE MANOR, BOLNEY ROAD, RH13 8AZ	522766	122607

Table 4-2 NSRs operational (substation)

	British Grid Reference		
NSR Reference	Location description	X	\mathbf{Y}
SS1-NE	SOUTHLANDS, KENT STREET, RH13 8BA	523192	122665
SS2-SE	WESTRIDGE, KENT STREET, RH13 8BB	523178	121957
SS3-SW	TAINTFIELD FARMHOUSE, KINGS LANE, RH13 8BD	522530	121990
SS4-NW	OAKENDENE MANOR, BOLNEY ROAD, RH13 8AZ	522770	122614

4.2 Details of monitoring undertaken

Data collection methods

4.2.1 Sound monitoring was undertaken to determine the existing acoustic environment. Surveys were undertaken at receptor locations most likely to be affected by construction activity and operational activity.
4.2.2 Noise monitoring equipment was set to measure for intervals of 15 minutes in accordance with BS 4142:2014 + A1:2019 (BSI, 2019), which states:
"8.1.3 Ensure that the measurement time interval is sufficient to obtain a representative value of the background sound level for the period of interest. This should comprise continuous measurements of normally not less than 15 min intervals, which can be continuous or disaggregated."
4.2.3 All sound level measurements were undertaken in accordance with BS 4142:2014+A1:2019 (BSI, 2019) and BS 7445-1:2003 (BSI, 2003), i.e. with microphones mounted to a height of 1.2 to 1.5 m above ground level and no less than 3.5 m from any reflecting surface other than the ground.
4.2.4 At each location sound levels were measured using integrating averaging sound level meters (SLMs) conforming to Class 1 as defined by BS EN 61672-1:2013 (BSI, 2013). The SLMs were field calibrated before and at the end of each survey period by applying an acoustic calibrator, conforming to BS EN 60942:2018 (BSI, 2018), to the microphone to check the sensitivity of the measuring equipment. Any drift in calibration levels was noted at the end of the survey period. No significant deviation was found at any location.
4.2.5 All SLMs used during the monitoring had undergone laboratory calibration within a period not exceeding two years prior to use. All acoustic calibrators used had undergone laboratory calibration within a period not exceeding one year prior to
use. See Annex A for a summary of laboratory calibrations and calibration certificates.
4.2.6 Meteorological measurement equipment was deployed to monitor local wind speeds and direction, precipitation, air temperature and relative humidity during the surveys. The logged meteorological data have been used in the analysis of the sound level data to ensure that only data collected during appropriate weather conditions has been used when determining representative sound levels to be used in the assessment.

4.3 Data collection locations

Construction Phase

4.3.1 Partially attended sound monitoring equipment was installed at locations representative of the nearest NSRs to:

- trenchless crossing compounds; and
- temporary construction compounds.
4.3.2 The sound monitoring equipment measured sound levels for approximately 24hours.
4.3.3 1-hr attended sound monitoring was undertaken at proposed heavy construction access locations where existing road traffic flows were unlikely to be suitable to calculate baseline noise levels to inform the construction traffic assessment.
4.3.4 All measurements were undertaken during local schools' term-time.
4.3.5 The 24-hour monitoring equipment was unattended for the majority of the survey period. Observations of the sound environment were made during equipment deployment and collection to contextualise the monitoring location.
4.3.6 Sound monitoring was proposed to be undertaken at 31 locations. To date, sound monitoring has been completed at 25 locations between 27-29 March 2023, 3 - 4 May and 15-17 November 2023. Monitoring has not been undertaken at all 31 proposed locations due to land access restrictions.
4.3.7 Where baseline data is not available to inform the assessment, the approach has subsequently defaulted to using Category A significance thresholds based on Table E. 1 from BS-5228-1 (BSI, 2014a). This is the most conservative assessment category as it assumes the lowest existing ambient noise levels at the assessment location in accordance with the assessment methodology. In addition, further detail on the assessment approach is provided in the ES Chapter 21: Noise and vibration, Volume 2 of the ES (Document Reference: 6.2.21). Furthermore, all additional data obtained after DCO Application submission (i.e. surveys undertaken between 15-17 November 2023, has been incorporated into the ES Chapter 21: Noise and vibration, Volume 2 of the ES (Document Reference: 6.2.21) which has been updated at the Procedural Deadline A submission.
4.3.8 The monitoring comprised 24-hour partially attended measurements to determine ambient and background noise levels at receptors in proximity to trenchless crossing compounds and temporary construction compounds.

Attended 1-hour measurements have been undertaken to characterise road traffic noise levels at construction access locations where existing traffic data is unlikely to be sufficient to calculate the corresponding road traffic noise,
Partially attended 24-hour monitoring locations are presented in Table 4-3.

Page intentionally blank

Table 4-3 24-hour monitoring locations

Monitoring Location ID	Location description	British Grid		Monitoring period/ Comment	Representative of NSR(s)
		X	Y		
HDD-01- NML1	The Sound Level Meter (SLM) was deployed along the eastern boundary of a hedge bounding garden. The SLM was located approximately 2.5 m above ground in a free-field position, approximately 30 m from the closest acoustically reflective façade.	500903	101643	$\begin{aligned} & \text { 27/03/2023 - } \\ & \text { 28/03/2023 } \end{aligned}$	HDD01-N, HDD01-S, HDD01A-S
HDD-02- NML2	The SLM was deployed along the north of a fence/bund bounding garden. The SLM was located approximately 2.5 m above ground in a free-field position, approximately 30 m from the closest acoustically reflective façade.	501533	101302	$\begin{aligned} & \text { 27/03/2023 - } \\ & \text { 28/03/2023 } \end{aligned}$	HDD02-S
HDD-03NML3	No access to monitoring location.	501529	103384	N/A	HDD03-S, HDD03-E, HDD03-S Industrial, HDD03NE
HDD-07NML5	The SLM was deployed along the northern boundary of an agricultural field directly to the west of Lyminster Road, and to the north of Brookside Caravan Park. The SLM was located approximately 1.5 m above ground in a free-field position.	502583	104621	$\begin{aligned} & \text { 16/11/2023 } \\ & \text { 17/11/2023 } \end{aligned}$	HDD05-N, HDD05-SW, HDD05-S, HDD05-E, HDD06-W, HDD06-S, HDD06-N

Monitoring Location ID	Location description	British Grid		Monitoring period/ Comment	Representative of NSR(s)
		X	Y		
HDD-18- NML14	The SLM was deployed west of the Memorial Hall, at the southeastern corner of a recreational field directly to the north of St Marys C of E Primary School. The SLM was located approximately 1.5 m above ground in a free-field position, approximately 13 m from the closest acoustically reflective façade.	512215	113056	$\begin{aligned} & \text { 16/11/2023 - } \\ & 17 / 11 / 2023 \end{aligned}$	HDD16and17-S, HDD16and17-N, Compound 2 - SW, Compound 2 - S
HDD-19- NML15	No access to monitoring location.	512579	112943	N/A	HDD16and17-E,
HDD-20- NML16	No access to monitoring location.	514213	113464	N/A	HDD18-E
HDD-21- NML17	No access to monitoring location.	514560	113648	N/A	HDD19-N (Church), HDD19N, HDD19-S, HDD19-E, HDD19-SW
HDD-22- NML18	The SLM was deployed on a fence post to the south of the nearby property. The SLM was located approximately 2.5 m above ground in a free-field position, approximately 30 m from the closest acoustically reflective façade.	516961	114872	$\begin{aligned} & \text { 28/03/2023 } \\ & \text { 29/03/2023 } \end{aligned}$	HDD20-N, HDD20-W
HDD-23NML19	The SLM was deployed approximately 20 m east of the B2135. The SLM was located approximately 1.5 m above ground in a free-field position, approximately 1 m from the closest acoustically reflective façade.	517967	115606	$\begin{aligned} & \text { 28/03/2023 - } \\ & \text { 29/03/2023 } \end{aligned}$	$\begin{aligned} & \text { HDD21-E, HDD21-N, } \\ & \text { HDD21-S } \end{aligned}$

Monitoring Location ID	Location description	British Grid		Monitoring period/ Comment	Representative of NSR(s)
		X	Y		
HDD-24- NML20	The SLM was deployed in the southeast corner of the field. The SLM was located approximately 1.5 m above ground in a free-field position.	518752	116794	$\begin{aligned} & \text { 28/03/2023 - } \\ & \text { 29/03/2023 } \end{aligned}$	$\begin{aligned} & \text { HDD22-N, HDD22-S, } \\ & \text { HDD22-W } \end{aligned}$
HDD-25- NML21	The SLM was deployed in the northwest corner of the field. The SLM was located approximately 1.5 m above ground in a free-field position.	518725	117193	$\begin{aligned} & \text { 28/03/2023 - } \\ & \text { 29/03/2023 } \end{aligned}$	$\begin{aligned} & \text { HDD23-S, HDD23-W, } \\ & \text { HDD23-NW } \end{aligned}$
HDD-26- NML22	The SLM was deployed in the tree line to the west of the A281. The SLM was located approximately 1.5 m above ground in a free-field position.	520940	120032	$\begin{aligned} & \text { 27/03/2023 - } \\ & \text { 28/03/2023 } \end{aligned}$	HDD24-S, HDD24-E, HDD24-W, HDD24-N
HDD-27- NML23	The SLM was deployed in the field to the north of the nearby property. The SLM was located approximately 2.5 m above ground in a free-field position, about 1.5 m away from the closest acoustically reflective façade.	521503	120246	$\begin{aligned} & \text { 28/03/2023 } \\ & \text { 29/03/2023 } \end{aligned}$	HDD25-S
HDD-28- NML24	No access to monitoring location.	521841	121061	N/A	HDD25-N, HDD26-W, HDD26-E, HDD26-N
HDD-31- NML25	The SLM was deployed on the southern boundary of the nursing home. The SLM was located approximately 1.5 m above ground in a free-field position, approximately 50 m from the closest acoustically reflective façade.	523896	121808	$\begin{aligned} & \text { 27/03/2023 } \\ & \text { 28/03/2023 } \end{aligned}$	HDD29-N, HDD29-W, HDD29-E, HDD29-S

Monitoring Location ID	Location description	British Grid		Monitoring period/ Comment	Representative of NSR(s)
		X	Y		
HDD-32- NML26	The SLM was deployed on a fencepost adjacent to the A27. The SLM was located approximately 1.5 m above ground in a free-field position, approximately 50 m from the closest acoustically reflective façade.	505422	105641	$\begin{aligned} & \text { 03/05/2023 - } \\ & 04 / 05 / 2023 \end{aligned}$	HDD08-S, HDD08-N (Hospice), HDD08-W
HDD-33NML27	No access to monitoring location.	505865	105425	N/A	HDD09 E, HDD09-S, HDD09N
HDD-34- NML28	The SLM was deployed on a fencepost to the north east of the closest property. The SLM was located approximately 2.5 m above ground in a free-field position, approximately 6 m from the closest acoustically reflective façade.	506227	105856	$\begin{aligned} & \text { 28/03/2023 - } \\ & \text { 29/03/2023 } \end{aligned}$	HDD10-S, HDD10-E, HDD10-W, HDD10-N
HDD-35NML29	The SLM was deployed on a fencepost to the north west of the closest property. The SLM was located approximately 2.7 m above ground in a free-field position, approximately 20 m from the closest acoustically reflective façade.	506686	105839	$\begin{aligned} & \text { 27/03/2023 - } \\ & \text { 28/03/2023 } \end{aligned}$	HDD11-E, HDD11-S
HDD-38 NML30*	The SLM was located approximately 1.5 m above ground in a free-field position.	501529	103384	$\begin{aligned} & \text { 27/03/2023 - } \\ & \text { 28/03/2023 } \end{aligned}$	Initially used to represent HDD12-E, HDD12-SE but daytime superseded by TC-12-NML41
TC-07NML40	No access to monitoring location.	504598	105496	N/A	HDD07-N, HDD07-N

Monitoring Location ID	Location description	British Grid		Monitoring period/ Comment	Representative of NSR(s)
		X	Y		
$\begin{aligned} & \text { TC-12- } \\ & \text { NML41 } \end{aligned}$	The SLM was deployed adjacent to a grassed area approximately 50 m west of Michelgrove Lane, 90 m south of Michelgrove House, and 11 m southwest of Michelgrove Cottages. The SLM was located approximately 1.5 m above ground in a free-field position, approximately 11 m from the closest acoustically reflective façade.	508174	108438	$\begin{aligned} & \text { 16/11/2023 } \\ & \text { 14:00-} \\ & 16 / 11 / 2023 \\ & 16: 30 \end{aligned}$	HDD12-E, HDD12-SE
$\begin{aligned} & \text { CC-1- } \\ & \text { NML31 } \end{aligned}$	The SLM was deployed on the northern boundary of an agricultural field directly to the east of Church Lane, and to the north of Climping Village Hall and playing fields. The SLM was located approximately 1.5 m above ground in a free-field position.	500414	102216	$\begin{aligned} & 16 / 11 / 2023 \\ & 17 / 11 / 2023 \end{aligned}$	Compound 1 - S, Compound 1 - E, Compound 1 - N, Compound 1 - W, Compound 1-W (Village Hall), Climping C of E Primary School
CC-3NML32	The SLM was deployed in the southeast corner of Washington Caravan and Camping Park adjacent to the southern boundary hedgerow. The SLM was located approximately 1.5 m above ground in a free-field position.	512308	113335	$\begin{aligned} & 15 / 11 / 2023 \\ & 16 / 11 / 2023 \end{aligned}$	Compound 2 - E, Compound 2 - NW, Compound 2 - N (Caravan Park)
$\begin{aligned} & \text { CC-4- } \\ & \text { NML33** } \end{aligned}$	No access to monitoring location	512909	113352	N/A	N/A
CC-5- NML34	The SLM was deployed at the northern boundary of the recreational field directly to the west of Oakendene Industrial Estate, and approximately	522450	122558	$\begin{aligned} & 15 / 11 / 2023 \\ & 16 / 11 / 2023 \end{aligned}$	Compound 3 - N, Compound 3 - NW, Compound 3 - NE

Monitoring Location ID	Location description	British Grid		Monitoring period/ Comment	Representative of NSR(s)
		X	Y		
	45 m south of the A272. The SLM was located approximately 1.5 m above ground in a free-field position.				
OPNML1***	The SLM was located approximately 10 m west of Kent Street and 80 m south of the A272. The SLM was deployed at a height of 1.5 m above ground in a free-field position.	523149	122672	$\begin{aligned} & \text { 13/02/2023 - } \\ & \text { 20/02/2023 } \end{aligned}$	Compound 4 - E
OP- NML3***	The SLM was located approximately 200 m south of the Oakendene Industrial Estate and was deployed at a height of 1.5 m above ground in a free-field position.	522572	122055	$\begin{aligned} & \text { 13/02/2023 - } \\ & \text { 20/02/2023 } \end{aligned}$	Compound 3 -S
OP-NML4**	The SLM was located approximately 200 m south of the A272 and 160m east of the Oakendene Industrial Estate and was deployed at a height of 1.5 m above ground in a free-field position.	522798	122562	$\begin{aligned} & \text { 06/02/2023 - } \\ & \text { 13/02/2023 } \end{aligned}$	Compound 4 - W, Compound 4 - NW, Compound 4 - N
* This survey location has been superseded during the daytime, by Position TC-12-NML41, which is more representative of the assessment receptors.					
**This monitoring location was initially proposed to be representative of the NSRs to the eastern Washington Construction Compound. However, this compound is not part of the Proposed Development and the associated receptors are not part of the assessment.					

Monitoring Location ID	Location description	British Grid	Monitoring period/ Comment	Representative of NSR(s)

***Operational monitoring locations associated with the onshore substation operational surveys have been used as representative monitoring locations for receptors associated with the Oakendene Substation Compound, and Oakendene West Compound.

Table 4-4 1-hour monitoring locations

Monitoring Location ID	Location description	British Grid		Monitoring period/ Comment
		X	Y	
CA-2-NML36	The SLM was located approximately 1.6 m above ground in a free-field position.	500903	101643	27/03/2023-28/03/2023
CA-3 NML37	No access to monitoring location	501533	101302	27/03/2023-28/03/2023
CA-4 NML38	The SLM was located approximately 1.5 m above ground in a free-field position.	501529	103384	27/03/2023-28/03/2023
CA-5-NML39	The SLM was located approximately 1.5 m above ground in a free-field position.	502583	104621	27/03/2023-28/03/2023
CA-6 NML40	The SLM was located approximately 1.5 m above ground in a free-field position.	512215	113056	27/03/2023-28/03/2023
CA-7-NML41	The SLM was located approximately 1.5 m above ground in a free-field position.	512579	112943	27/03/2023-28/03/2023
CA-8-NML42	The SLM was located approximately 1.5 m above ground in a free-field position.	514213	113464	27/03/2023-28/03/2023

Page intentionally blank

Meteorological conditions

4.3.11 A data logging meteorological station was deployed at NML30 (3 March 2023 to 4 March 2023) during the survey period. The meteorological station logged concurrently with the sound level surveys to allow adverse weather conditions (i.e. wind speeds in excess of $5 \mathrm{~ms}^{-1}$ or rainfall) to be identified and corresponding sound levels excluded from the data analysis.
4.3.12 Specific details about the location of the monitoring equipment and observations made during deployment and collection of the long-term measurements are detailed in Annex B.
4.3.13 Table 4-5 presents the total time monitored at each 24-hour location alongside the total time excluded from the data analysis.

Table 4-5 Time monitored at each 24-hr monitoring location

Monitoring Location ID	Total no. 15- minute samples	Total duration of dataset (HH:MM)	No. samples excluded due to adverse weather	Duration of dataset, with exclusions (HH:MM)
HDD-01-NML1	88	$22: 00$	2	$21: 30$
HDD-02-NML2	88	$22: 00$	2	$21: 30$
HDD-07-NML5	80	$20: 00$	2	$19: 30$
HDD-18-NML14	80	$20: 00$	7	$18: 15$
HDD-22-NML18	76	$19: 00$	1	$18: 45$
HDD-23-NML19	92	$23: 00$	4	$22: 00$
HDD-24-NML20	86	$21: 30$	3	$20: 45$
HDD-25-NML21	86	$21: 30$	2	$21: 00$
HDD-26-NML22	89	$22: 15$	2	$21: 45$
HDD-27-NML23	68	$23: 00$	2	$16: 30$
HDD-31-NML25	93	$21: 45$	3	$22: 45$
HDD-32-NML26	87	$21: 30$	3	$21: 00$
HDD-34-NML28	86	88	1	$20: 45$
HDD-35-NML29	88		215	

Monitoring Location ID	Total no. 15- minute samples	Total duration of dataset (HH:MM)	No. samples excluded due to adverse weather	Duration of dataset, with exclusions (HH:MM)
HDD-38- NML30*	91	$22: 45$	3	$22: 00$
TC-12-NML41**	11	$02: 45$	0	$02: 45$
CC-1-NML31	80	$20: 00$	2	$20: 00$
CC-3-NML32	80	$20: 00$	10	$19: 30$
CC-5-NML34	80	$20: 00$	8	$18: 00$
* This survey location has been superseded, during the daytime, by Position TC-12-				
NML41 which is more representative of the assessment receptors				
**This survey location was constrained due to shooting activity. Consequently, only a small window of survey opportunity was available. Therefore, evening and night-time sound data was not obtained.				

Operation and maintenance phase

4.3.14 Long term monitoring equipment was left to measure sound levels at the closest receptors to the proposed onshore substation at Oakendene.
4.3.15 The long-term monitoring equipment was unattended for the majority of the survey period. Observations of the sound environment were made during equipment deployment and collection to contextualise the monitoring location.
4.3.16 Sound monitoring was undertaken at four locations around the proposed onshore substation at Oakendene location between 6-20 February 2023. This consisted of long-term monitoring to determine ambient and background noise levels at receptors in proximity to the proposed onshore substation at Oakendene.
4.3.17 The long-term monitoring locations are presented in Table 4-6 and Figure 21.2, Volume 3 of the ES (Document Reference: 6.3.21).

Table 4-6 Long-term monitoring locations (operation)

| Monitoring
 Location | Location description | British Grid | | Monitoring
 period | Representative
 of NSR(s) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| ID | X | Y | | | |
| OP-NML1 | The SLM was located
 Tapproximately 10m
 west of Kent Street and | 523149 | 122672 | $13 / 02 / 2023$ | SS1-NE |
| | | | - | $20 / 02 / 2023$ | |

Monitoring Location ID	Location description	British Grid		Monitoring period	Representative of NSR(s)
		X	Y		
	80 m south of the A272. The SLM was deployed at a height of 1.5 m above ground in a freefield position.				
OP-NML2	The SLM was located approximately 40 m west of Kent Street and was deployed at a height of 1.5 m above ground in a free-field position.	523126	122085	$\begin{aligned} & 13 / 02 / 2023 \\ & - \\ & 20 / 02 / 2023 \end{aligned}$	SS2-SE
OP-NML3	The SLM was located approximately 200 m south of the Oakendene Industrial Estate and was deployed at a height of 1.5 m above ground in a free-field position.	522572	122055	$\begin{aligned} & 13 / 02 / 2023 \\ & - \\ & 20 / 02 / 2023 \end{aligned}$	SS3-SW
OP-NML4	The SLM was located approximately 200 m south of the A272 and 160 m east of the Oakendene Industrial Estate and was deployed at a height of 1.5 m above ground in a free-field position.	522798	122562	$\begin{aligned} & 06 / 02 / 2023 \\ & - \\ & 13 / 02 / 2023 \end{aligned}$	SS4-NW

Meteorological conditions
4.3.18 Meteorological conditions were measured at OP-NML4. Meteorological conditions varied throughout the survey. Monitoring periods where average wind speeds exceeded $5 \mathrm{~ms}^{-1}$ and / or rainfall occurred have been removed from the analysis to ensure that adverse weather conditions had no influence on the monitoring results.
4.3.19 Table 4-7 presents the total time monitored at each location alongside the total time excluded from the data analysis.

Table 4-7 Time monitored at each monitoring location (operation)

Monitoring Location ID	Total no. 15- minute samples	Total duration of dataset (HH:MM)	No. samples excluded due to adverse weather	Duration of dataset, with exclusions
OP-NML1	679	7 Days 1 Hours and 45 Minutes	6	7 Days 0 Hours and 15 Minutes
OP-NML2	679	7 Days 1 Hours and 45 Minutes	6	7 Days 0 Hours and 15 Minutes
OP-NML3	677	7 Days 1 Hours and 15 Minutes	4	7 Days 0 Hours and 15 Minutes
OP-NML4	647	6 Days 17 Hours and 45 Minutes	3	6 Days 17 Hours and 0 Minutes

Page intentionally blank

5. Results

5.1 Summary

5.1.1 Annex B contains detailed results for each monitoring location, including site photos and monitoring location. For each assessment period, different parameters have been calculated along with the statistics for the number of periods excluded from the analysis due to adverse weather.
5.1.2 The different assessment periods are presented in Table 5-1.

Table 5-1 Summary of assessment periods

Assessment Period	Time
Construction daytime	Monday - Sunday: 0700-1900
Construction evenings	Monday - Sunday: 1900-2300
Construction night-time	Monday - Sunday: 2300-0700
Operational daytime	Monday - Sunday: 0700-2300
Operational night-time	Monday - Sunday: 2300-0700

Construction

5.1.3 A summary of the 24-hour logarithmically averaged ambient noise levels is presented in Table 5-2.

Table 5-2 Summary of 24-hr ambient noise levels (logarithmic average)

Monitoring Location ID	$L_{\text {Aeq, }}(\mathrm{dB})$		
	Construction daytime	Construction evening	Construction night-time
HDD-01-NML1	49	41	49
HDD-02-NML2	53	41	51
HDD-07-NML5	50	46	46
HDD-18-NML14	67	49	45
HDD-22-NML18	49	37	37
HDD-23-NML19	56	50	47

Monitoring Location ID	$L_{\text {Aeq, }}(\mathrm{dB})$		
	Construction daytime	Construction evening	Construction night-time
HDD-24-NML20	53	51	45
HDD-25-NML21	50	46	42
HDD-26-NML22	57	52	52
HDD-27-NML23	47	38	40
HDD-31-NML25	51	49	46
HDD-32-NML26	65	62	59
HDD-34-NML28	65	59	54
HDD-35-NML29	63	58	54
HDD-38-NML30	46*	43	45
TC-12-NML41	57	-**	-**
CC-1-NML31	57	52	51
CC-3-NML32	51	47	43
CC-5-NML34	62	56	53
CA-2-NML36	51	-	-
CA-4-NML38	46	-	-
CA-5-NML39	57	-	-
CA-6-NML40	59	-	-
CA-7-NML41	70	-	-
CA-8-NML42	47	-	-

* This survey location has been superseded during the daytime, by Position TC-12-NML41, which is more representative of the assessment receptors.
**This survey location was constrained due to shooting activity. Consequently, only a small window of survey opportunity was available. Therefore, evening and night-time sound data was not obtained and previously obtained levels from HDD38 should be used.

Operation and maintenance

5.1.4 A summary of the long-term logarithmically averaged ambient noise levels is presented in Table 5-3.

Table 5-3 Summary of long-term ambient noise levels (logarithmic average)

	$L_{\text {Aeq, } 7}(\mathrm{~dB})$	
Monitoring Location ID	Operational daytime	Operational night-time
OP-NML1	61	55
OP-NML2	47	40
OP-NML3	46	46
OP-NML4	50	46

5.1.5 A summary of the statistical background levels are provided Table 5-4. Graphic 5-1 to Graphic 5-8 provide graphs illustrating the number of occurrences of each La90,15min measurement at each operational monitoring location.

Page intentionally blank

Table 5-4 Summary of statistical background sound levels

	Background Sound Level, La90, (dB)							
	Operational Daytime				Operational Night-time			
	OP-NML1	OP-NML2	OP-NML3	OP-NML4	OP-NML1	OP-NML2	OP-NML3	OP-NML4
Min	31	28	31	30	19	20	22	19
25th Percentile	49	34	36	44	26	25	29	26
Median	54	38	40	45	30	28	31	30
75th Percentile	57	40	42	48	35	31	35	36
Max	62	46	48	54	58	44	46	53
Mode	58	39	44	45	24	29	29	28
Arithmetic Mean	52	37	39	45	32	29	32	32

Graphic 5-1 OP-NML1 - Daytime

Graphic 5-2 OP-NML1 - Night-time

Graphic 5-3 OP-NML2 - Daytime

Graphic 5-4 OP-NML2 - Night-time

Graphic 5-5 OP-NML3 - Daytime

Graphic 5-6 OP-NML3 - Night-time

Graphic 5-7 OP-NML4 - Daytime

Graphic 5-8 OP-NML4 - Night-time

Page intentionally blank

6. Summary

6.1.1 Baseline sound surveys have been undertaken to inform the assessment in Chapter 21: Noise and vibration, Volume 2 Rev B of the ES (Document Reference: 6.2.21) This Appendix presents the results of the baseline sound surveys which were conducted.
6.1.2 All monitoring and subsequent data processing, analysis and reporting was undertaken in accordance with the relevant British Standards and the agreed methodology.
6.1.3 The measured sound levels are typical of the locations where the data were acquired. Any unrepresentative events / data have been removed from the datasets (periods with wind speeds greater than $5 \mathrm{~m} / \mathrm{s}$ or periods with rain, for example).
6.1.4 Based on the above, the measured sound levels are considered representative of the NSRs in proximity to each measurement location, and the representative sound levels to be used in the noise assessment in Chapter 21: Noise and vibration, Volume 2 of the ES (Document Reference: 6.2.21) and are provided in Table 6-1 to Table 6-3.

Table 6-1 Summary of construction baseline ambient sound levels (logarithmic average)

Receptor ID	Construction daytime	Construction evening	Construction night-time
HDD01-N	49	41	49^{*}
HDD01-S	49	41	49^{*}
HDD01A-S	49	41	49^{*}
HDD02-S	53	41	51^{*}
HDD05-E	50	46	46
HDD05-N	50	46	46
HDD05-S	50	46	46
HDD05-SW	50	46	46
HDD06-N	50	46	46
HDD06-W	50	46	46

Receptor ID	$L_{\text {Aeq, }}(\mathrm{dB})$		
	Construction daytime	Construction evening	Construction night-time
HDD06-S	50	46	46
HDD08-N (Hospice)	65	62	59
HDD08-S	65	62	59
HDD08-W	65	62	59
HDD10-E	65	59	54
HDD10-N	65	59	54
HDD10-S	65	59	54
HDD10-W	65	59	54
HDD11-E	63	58	54
HDD11-S	63	58	54
HDD12-E	57	-	-
HDD12-SE	57	-	-
HDD16and17-S	67	49	47
HDD16and17-E	67	49	47
HDD16and17-N	67	49	47
HDD22-N	49	37	37
HDD22-W	49	37	37
HDD23-E	56	50	47
HDD23-N	56	50	47
HDD23-S	56	50	47
HDD24-N	53	51	45
HDD24-S	53	51	45
HDD24-W	53	51	45
HDD25-S	50	46	42
HDD25-W	50	46	42

Receptor ID	Construction daytime	Construction evening	Construction night-time
HDD25-NW	50	46	42
HDD26-S	57	52	52^{*}
HDD26-E	57	52	52^{*}
HDD26-W	57	52	52^{*}
HDD26-N	57	52	52^{*}
HDD27-N	47	38	40
HDD27-S	47	38	40
HDD29-W	51	49	46
HDD29-S	51	49	46

*Data identified as anomalous. The assessment will consequently utilise Category A thresholds of significance from the BS 5228-1 'ABC method' (BSI, 2009) for these NSRs.

Table 6-2 Summary of operational baseline ambient sound levels (logarithmic average)

NSR Location reference	$L_{\text {Aeq, } 7}(\mathrm{~dB})$	
	Operational daytime	Operational night-time
SS1-NE	61	55
SS2-SE	48	40
SS3-SW	47	46
SS4-NW	51	47

Table 6-3 Summary of operational baseline background sound levels (median)

NSR Location reference	$L_{A 90, T}(\mathrm{~dB})$ Operational daytime	
Operational night-time		

NSR Location reference	LA90, (dB) Operational daytime	
Operational night-time		
SS3-SW	41	31
SS4-NW	46	30

6.1.5 BS 4142 (BSI, 2019) requires that the background sound levels adopted for the assessment be representative for the period being assessed. BS 4142 (BSI, 2019) recommends that the background sound level should be derived from continuous measurements of normally not less than 15-minute intervals, which can be contiguous or disaggregated. However, BS 4142 (BSI, 2019) states that there is no 'single' background sound level that can be derived from such measurements. It is particularly difficult to determine what is 'representative' of the night-time period because it can be subject to a wide variation in background sound levels between the 'shoulder' night periods, i.e. 23:00-00:00 and 06:00-07:00 when the greatest increase or decrease in background sound levels are likely to occur. The accompanying note to paragraph 8.1.4 states that:
'a representative level ought to account for the range of background sounds levels and ought not automatically to be assumed to be either the minimum or modal value'.
6.1.6 It is considered that the median is suitably representative of the typical background sound level at each operational monitoring location and have subsequently been used to inform the assessment.

7. Glossary of terms and abbreviations

Table 7-1	Glossary of terms and abbreviations
Term	Definition
Acoustic environment	Sound from all sources as modified by the environment.
Ambient	Totally encompassing sound in a given situation at a given time, usually composed of sound from many sources near and far.
sound	The LAeq,T, of the totally encompassing sound in a given situation at a given time, usually from many sources near and far, at the
Ambient	
assessment location over a given time interval, T.	

Term	Definition
	a centre frequency of 1000 Hz with lower and upper frequencies of 891 Hz and 1112 Hz , respectively.
Hertz (Hz)	The number of waves per second. The unit of measurement for frequency of a sound wave.
Impulsive	A sound described as being impulsive will be characterised by a sudden onset rate of sound. In BS 4142:2014 + A1:2019 the onset rate of a sound must exceed a slope gradient of 10 dB per second on the positive slope for a sound to be characterised as impulsive. A penalty of up to 9 dB can be applied to an impulsive sound dependent on impulse prominence.
Intermittent	An intermittent sound will come from a source that has on and off conditions that are readily distinguishable against the residual acoustic environment. In BS 4142:2014 + A1:2019 a penalty of 3 dB can be applied to a sound where it is determined to be intermittent.
La10, 18h	The $L_{A 10,18 h}$ is the A-weighted sound pressure level that is exceeded for 10% of an 18 -hour measurement.
La90, t	The A-weighted sound pressure level that is exceeded for 90% of a given time interval, T. Known as the 'background sound level'.
LAeq, ${ }_{\text {t }}$	The A-weighted equivalent continuous sound level. It is the notional continuous level that, over the defined time period, T, contains the same sound energy as the actual fluctuating sound that occurred over the same time period.
$L_{\text {Aeq, }}$ 16hr / LAeq, 8hr	The LAeq ${ }^{\text {over }} 16$ hour and 8 hour periods respectively
$L_{\text {Aeq, }}$ 18hr / LAeq, 6hr	The $L_{\text {Aeq }}$ over 18 hour and 6 hour periods respectively.
$L_{\text {afmax, }}$	The maximum recorded sound level within a given time period, T, measured using a fast time weighting.
$L_{\text {an,t }}$	The level of A-weighted noise exceeded for N\% of the measurement time T . Note that the time weighting (usually Fast) is sometimes included, denoted by 'F' (e.g. Lafn,T)
$L_{\text {ASmax, }}$	The maximum recorded sound level within a given time period, T, measured using a slow time weighting.
Mean (average)	The arithmetic average of a set of numbers, e.g. add up the numbers and divide by the number of numbers.

Term	Definition
Modal (average)	The mode is the number in a dataset that is repeated more often than any other number in the same set.
Noise	A term used to describe 'unwanted sound' or any sound that is undesired by the recipient.
NSIP	Nationally Significant Infrastructure Projects are major infrastructure developments in England and Wales which are consented by DCO under the Planning Act 2008. These include proposals for offshore wind farms with an installed capacity over 100MW.
Rating level, Lar, T	The specific sound level, plus any adjustments for the characteristic features of the sound, (such as tonality, impulsivity or intermittency).
Root mean square (rms)	Root Mean Square of a time-varying quantity is obtained by squaring the amplitude at each instant, obtaining the average of the squared values over the interval of interest, and then taking the Square Root of this average.
Sound	A term used to describe airborne waves that can be heard.
Sound level meter (SLM)	SLM is the instrument used for acoustic (sound that travels through air) measurements. It is commonly a hand-held instrument with a microphone. The diaphragm of the microphone responds to changes in air pressure caused by sound waves.
Sound pressure level (L_{p})	Sound pressure level is the RMS value of the Instantaneous Sound Pressures measured over a specified period of time, measured in decibels $(d B)$ to a given reference pressure level.
Specific sound level	An equivalent continuous A-weighted sound pressure level produced by the specific sound source at the assessment location over a given reference time interval, Tr.
Time weighting	Time weightings determine how quickly the sound level meter responds to changes in sound pressure level. Fast time weighting: the sound level meter samples over a few discrete 125 ms periods, with all parameters calculated from these 125 ms measurements. E.g. a 15 -minute measurement period is actually 432,000 individual measurements. Slow time weighting: the sound level meter samples over several discrete 1 second periods, with all parameters calculated from these 1 second measurements.
Tonal	A sound described as being tonal will be characterised as a sound that contains one or more distinct tones. In BS 4142:2014 + A1:2019 a tone can be identified where a frequency band contains more energy and is shown to have a certain level difference over its neighboring

Term Definition

bands. A penalty of up to 6 dB can be applied to a tonal sound dependent on tonal prominence.

Weighting network

An electronic filter in a sound level meter, which approximates, under defined conditions, the frequency response of the human ear. The Aweighting network is most commonly used.

8. References

British Standards Institution (2003). Description and measurement of environmental noise.
Part 1: Guide to quantities and procedures. BSI, London
British Standards Institution (2013). Electroacoustics - Sound level meters. Part 1: Specifications. BSI, London.

British Standards Institution (2018). Electroacoustics - Sound calibrators. BSI, London.
British Standards Institution (2019). BS 4142:2014 + A1:2019 Methods for rating and assessing industrial and commercial sound. BSI, London.

British Standards Institution (BSI), (2014). BS 5228-1:2009 + A1:2014 Code of practice for noise and vibration control on construction and open sites. Part 1: Noise.

Department for Transport (DfT), (1995). Calculation of Railway Noise in 1995. DfT, London.

Environment Agency (2022). Noise and vibration management: environmental permits. [Online] Available at: https://www.gov.uk/government/publications/noise-and-vibration-management-environmental-permits/noise-and-vibration-management-environmentalpermits [Accessed 27 June 2023].

Highways England (2020). Design Manual for Roads and Bridges LA111: Noise and vibration. [Online] Available at:
https://www.standardsforhighways.co.uk/tses/attachments/cc8cfcf7-c235-4052-8d32d5398796b364? inline=true [Accessed 27 June 2023].

Her Majesty's Stationary Office (HMSO), (1988). Calculation of Road Traffic Noise. [Online] Available at:
https://www.bradford.gov.uk/Documents/Hard\ Ings\ Road\ improvement\ sch eme/2b\%20Compulsory\%20Purchase\%20Order\%20and\%20Side\%20Road\%20Order/5\% 20Supporting\%20documents/Calculation\%20of\%20Road\%20Traffic\%20Noise\%201988.p df [Accessed 27 June 2023].

Institute of Environmental Management \& Assessment (2014). Guidelines for
Environmental Noise Impact Assessment. [Online] Available at:
https://www.bing.com/ck/a?!\&\&p=00ad37f9caa18be3JmltdHM9MTY4NzkxMDQwMCZpZ3 VpZD0zN2E1OGM2YS03ZmRiLTZIZTAtM2Q4Ny05ZjUyN2ViODZmYjYmaW5zaWQ9NTE $4 \mathrm{Ng} \& \mathrm{ptn}=3 \& \mathrm{hsh}=3 \& \mathrm{fclid}=37 \mathrm{a} 58 \mathrm{c} 6 \mathrm{a}-7 \mathrm{fdb}-6 \mathrm{ee} 0-3 \mathrm{~d} 87$ -
9f527eb86fb6\&psq=Guidelines+for+Environmental+Noise+Impact+Assessments+IEMA+2 014\&u=a1aHR0cHM6Ly93d3cuaWVtYS5uZXQvZG93bmxvYWQtZG9jdW1IbnQvMjM2Njc 4\&ntb=1 [Accessed 28 June 2023].

International Standards Organization (ISO), (1996). ISO 9613-2:1996 Acoustics Attenuation of sound during propagation outdoors. Part 2: General method of calculation. ISO, Geneva.

Ministry of Housing, Communities \& Local Government (MHCLG), (2021). National Planning Policy Framework. [Online] Available at:
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment data/file/1005759/NPPF July 2021.pdf [Accessed 27 June 2023].
Transport and Road Research Laboratory, (1986). RR 53 Ground vibration caused by civil engineering works. TRL, Wokingham.

Transport Research Laboratory, (2002). Converting the UK traffic noise index LA10,18h to EU noise indices for noise mapping. [Online] Available at:
https://webarchive.nationalarchives.gov.uk/ukgwa/20130402151656/http:/archive.defra.go v.uk/environment/quality/noise/research/crtn/documents/noise crtn.pdf [Accessed 27 June 2023].

Annex A
 Calibration Certificates

Page intentionally blank

Measurement Systems

CERTIFICATE OF
CALIBRATION

Date of Issue: 30 March 2021
Calibrated at \& Certificate issued bv:

Certificate Number: UCRT21/1421

Customer

Order No.
Description
Identification

Performance Class
Test Procedure

26006559
Sound Level Meter / Pre-amp / Microphone / Associated Calibrator

Manufacturer	Instrument	Type	Serial No. / Version
Rion	Sound Level Meter	NL-52	01143535
Rion	Firmware		2.0
Rion	Pre Amplifier	NH-25	43552
Rion	Microphone	UC-59	07396
Rion	Calibrator	NC-74	34251554
	Calibrator adaptor type if applicable	NC-74-002	

1

TP 2.SLM 61672-3 TPS-49
Procedures from IEC 61672-3:2006 were used to perform the periodic tests.
Type Approved to IEC 61672-1:2002 YES Approval Number 21.21/13.02
If YES above there is public evidence that the SLM has successfully completed the applicable pattern evaluation tests of IEC 61672-2:2003
Date Received
Date Calibrated

25 March 2021
30 March 2021

The sound level meter submitted for testing has successfully completed the class 1 periodic tests of IEC 61672-3:2006, for the environmental conditions under which the tests were performed. As public evidence was available, from an independent testing organisation responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2:2003, to demonstrate that the model of sound level meter fully conformed to the requirements in IEC 61672-1:2002, the sound level meter submitted for testing conforms to the class 1 requirements of IEC 61672-1:2002.

Previous Certificate	Dated	Certificate No.	Laboratory
	12 December 2019	UCRT19/2347	0653

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

CERTIFICATE OF CALIBRATION

Sound Level Meter Instruction manual and data used to adjust the sound levels indicated.

SLM instruction manual title Sound	Meter NL-42			
SLM instruction manual ref / issue	11-03			
SLM instruction manual source	Manufac			
Internet download date if applicable	N/A			
Case corrections available	Yes			
Uncertainties of case corrections	Yes			
Source of case data	Manufac			
Wind screen corrections available	Yes			
Uncertainties of wind screen corrections	Yes			
Source of wind screen data	Manufac			
Mic pressure to free field corrections	Yes			
Uncertainties of Mic to F.F. corrections	Yes			
Source of Mic to F.F. corrections	Manufac			
Total expanded uncertainties within the	ments of IEC 6	2-1:2		Yes
Specified or equivalent Calibrator	Specifi			
Customer or Lab Calibrator	Customers	rator		
Calibrator adaptor type if applicable	NC-74-			
Calibrator cal. date	26 March			
Calibrator cert. number	UCRT21			
Calibrator cal cert issued by	0653			
Calibrator SPL @ STP	94.03	dB		tion
Calibrator frequency	1001.00	Hz	Cal	tion
Reference level range	25-130	dB		

Accessories used or corrected for during calibration - Extension Cable \& Wind Shield WS-15
Note - if a pre-amp extension cable is listed then it was used between the SLM and the pre-amp.

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor $k=2$, providing a coverage probability of approximately 95%. The uncertainty evaluation has been carried out in accordance with UKAS requirements.
For the test of the frequency weightings as per paragraph 12. of IEC 61672-3:2006 the actual microphone free field response was used.
The acoustical frequency tests of a frequency weighting as per paragraph 11 of IEC 61672-3:2006 were carried out using an electrostatic actuator.
END

Calibrated by:

CERTIFICATE OF
CALIBRATION
0653 (X4)

Date of Issue: 12 June 2023
Calibrated at \& Certificate issued bv.

Certificate Number: UCRT23/1766

Customer

Order No.
20163316

Test Procedure \quad Procedure TP 1 Calibration of Sound Calibrators
Description Acoustic Calibrator

Identification	Manufacturer	Instrument	Model	Serial No.
	Rion	Calibrator	NC-74	34251553

The calibrator has been tested as specified in Annex B of IEC 60942:2003. As public evidence was available from a testing organisation (PTB) responsible for approving the results of pattern evaluation tests, to demonstrate that the model of sound calibrator fully conformed to the requirements for pattern evaluation described in Annex A of IEC 60942:2003, the sound calibrator tested is considered to conform to all the class 1 requirements of IEC 60942:2003.

ANV Job No.	UKAS23/06393	
Date Received	09 June 2023	
Date Calibrated	12 June 2023	
Previous Certificate	Dated Certificate No. Laboratory	UCRT22/1632 UC5

[^0]
CERTIFICATE OF CALIBRATION

Measurements

The sound pressure level generated by the calibrator in its WS2 configuration was measured five times by the Insert Voltage Method using a microphone as detailed below. The mean of the results obtained is shown below. It is corrected to the standard atmospheric pressure of 101.3 kPa (1013 mBar) using original manufacturers information.

Test Microphone	Manufacturer	Type
	Brüel \& Kjær	4134

Results
The level of the calibrator output under the conditions outlined above was

$$
94.01 \pm 0.10 \mathrm{~dB} \text { rel } 20 \mu \mathrm{~Pa}
$$

Functional Tests and Observations

The frequency of the sound produced was
$1002.91 \pm 0.12 \mathrm{~Hz}$ The total distortion was
$1.14 \pm 0.08 \%$ Distortion

During the measurements environmental conditions were

Temperature
Relative Humidity
Barometric Pressure

22	to	23	${ }^{\circ} \mathrm{C}$
39	to	46	$\%$
100.4	to	100.5 kPa	

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor $\mathrm{k}=2$, providing a coverage probability of approximately 95%. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

The uncertainties refer to the measured values only with no account being taken of the ability of the instrument to maintain its calibration.

A small correction factor may need to be applied to the sound pressure level quoted above if the device is used to calibrate a sound level meter which is fitted with a free-field response microphone. See manufacturers handbook for details.

END
Note:
Calibrator adjusted prior to calibration? NO
Initial Level N/A dB
Initial Frequency N/A Hz
Additional Comments
The results on this certificate only relate to the items calibrated as identified above.
None

CERTIFICATE
OF
CALIBRATION

Date of Issue: 16 June 2023

Certificate Number: UCRT23/1794

Customer

Order No.
Description
Identification

Performance Class
Test Procedure

20163436
Sound Level Meter / Pre-amp / Microphone / Associated Calibrator

Manufacturer	Instrument	Type	Serial No. / Version
Rion	Sound Level Meter	NL-52	01021290
Rion	Firmware		2.0
Rion	Pre Amplifier	NH-25	21332
Rion	Microphone	UC-59	04346
Rion	Calibrator	NC-74	35173440
	Calibrator adaptor type if applicable	NC-74-002	

TP 2.SLM 61672-3 TPS-49
Procedures from IEC 61672-3:2006 were used to perform the periodic tests.
Type Approved to IEC 61672-1:2002 YES Approval Number 21.21/13.02
If YES above there is public evidence that the SLM has successfully completed the applicable pattern evaluation tests of IEC 61672-2:2003

Date Received	15 June 2023	ANV Job No.	UKAS23/06405
Date Calibrated	16 June 2023		

The sound level meter submitted for testing has successfully completed the class 1 periodic tests of IEC 61672-3:2006, for the environmental conditions under which the tests were performed. As public evidence was available, from an independent testing organisation responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2:2003, to demonstrate that the model of sound level meter fully conformed to the requirements in IEC 61672-1:2002, the sound level meter submitted for testing conforms to the class 1 requirements of IEC 61672-1:2002.

Previous Certificate	Dated	Certificate No.	Laboratory
	17 May 2021	UCRT21/1642	0653

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

CERTIFICATE OF CALIBRATION

Certificate Number
UCRT23/1794
UKAS Accredited Calibration Laboratory No. 0653
Page 2 of 2 Pages

Sound Level Meter Instruction manual and data used to adjust the sound levels indicated.

Accessories used or corrected for during calibration - Extension Cable \& Wind Shield WS-15 Note - if a pre-amp extension cable is listed then it was used between the SLM and the pre-amp.

Environmental conditions during tests	Start	End		
Temperature	23.16	23.61	\pm	$0.30{ }^{\circ} \mathrm{C}$
Humidity	44.6	47.5	\pm	3.00 \%RH
Ambient Pressure	101.05	101.04	\pm	0.03 kPa

Response to associated Calibrator at the environmental conditions above.

Initial indicated level	94.1	dB		Adjusted indicated level	94.0
The uncertainty of the associated calibrator supplied with the sound level meter \pm	0.10	dB			

Self Generated Noise This test is currently not performed by this Lab.

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor $k=2$, providin a coverage probability of approximately 95%. The uncertainty evaluation has been carried out in accordance with UKAS requirements.
For the test of the frequency weightings as per paragraph 12. of IEC 61672-3:2006 the actual microphone free field response was used.
The acoustical frequency tests of a frequency weighting as per paragraph 11 of IEC 61672-3:2006 were carried out using an electrostatic actuator.

END

CERTIFICATE OF
CALIBRATION

Date of Issue: 15 June 2023
Calibrated at \& Certificate issued by:

Certificate Number: UCRT23/1793

Customer

Order No.
Description
Identification

Performance Class
Test Procedure

20163436
Sound Level Meter / Pre-amp / Microphone / Associated Calibrator

Manufacturer	Instrument	Type	Serial No. / Version
Rion	Sound Level Meter	NL-52	01021289
Rion	Firmware		2.0
Rion	Pre Amplifier	NH-25	21331
Rion	Microphone	UC-59	04345
Rion	Calibrator	NC-74	34851881
	Calibrator adaptor type if applicable	NC-74-002	

1
TP 2.SLM 61672-3 TPS-49
Procedures from IEC 61672-3:2006 were used to perform the periodic tests.
Type Approved to IEC 61672-1:2002 YES Approval Number 21.21/13.02
If YES above there is public evidence that the SLM has successfully completed the applicable pattern evaluation tests of IEC 61672-2:2003

Date Received	15 June 2023	ANV Job No.	UKAS23/06405
Date Calibrated	15 June 2023		

The sound level meter submitted for testing has successfully completed the class 1 periodic tests of IEC $61672-3: 2006$, for the environmental conditions under which the tests were performed. As public evidence was available, from an independent testing organisation responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2:2003, to demonstrate that the model of sound level meter fully conformed to the requirements in IEC 61672-1:2002, the sound level meter submitted for testing conforms to the class 1 requirements of IEC 61672-1:2002.

Previous Certificate	Dated	Certificate No.	Laboratory
	10 May 2021	UCRT21/1592	0653

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

CERTIFICATE OF CALIBRATION

Certificate Number
UCRT23/1793
UKAS Accredited Calibration Laboratory No. 0653
Page 2 of 2 Pages

Sound Level Meter Instruction manual and data used to adjust the sound levels indicated.

Accessories used or corrected for during calibration - Extension Cable \& Wind Shield WS-15 Note - if a pre-amp extension cable is listed then it was used between the SLM and the pre-amp.

Environmental conditions during tests	Start	End		
	Temperature	23.71	23.63	$\pm 0.30^{\circ} \mathrm{C}$
	Humidity	35.6	33.9	$\pm 3.00 \% \mathrm{RH}$
	Ambient Pressure	100.98	100.96	$\pm 0.03 \mathrm{kPa}$

Response to associated Calibrator at the environmental conditions above.

Initial indicated level	93.9	dB		Adjusted indicated level	94.0
The uncertainty of the associated calibrator supplied with the sound level meter \pm	0.10	dB			

Self Generated Noise This test is currently not performed by this Lab.

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor $k=2$, providing a coverage probability of approximately 95%. The uncertainty evaluation has been carried out in accordance with UKAS requirements.
For the test of the frequency weightings as per paragraph 12. of IEC 61672-3:2006 the actual microphone free field response was used.
The acoustical frequency tests of a frequency weighting as per paragraph 11 of IEC 61672-3:2006 were carried out using an electrostatic actuator.

END
Additional Comments The results on this certificate only relate to the items calibrated as identified above.
None

Date of Issue: 21 April 2022
Calibrated at \& Certificate issued by:

Certificate Number: UCRT22/1555

Customer

Order No.
Description Identification

26006559
Sound Level Meter / Pre-amp / Microphone / Associated Calibrator
Manufacturer Instrument Type Serial No./Version

Rion Sound Level Meter NL-52 00331828
Rion Firmware 2.0
Rion Pre Amplifier NH-25 21779
Rion Microphone UC-59 04895
Rion Calibrator NC-74 34251554
Calibrator adaptor type if applicable NC-74-002

Performance Class
Test Procedure

1
TP 2.SLM 61672-3 TPS-49
Procedures from IEC 61672-3:2006 were used to perform the periodic tests.

If YES above there is public evidence that the SLM has successfully completed the applicable pattern evaluation tests of IEC 61672-2:2003
Date Received
20 April 2022
Date Calibrated
21 April 2022
The sound level meter submitted for testing has successfully completed the class 1 periodic tests of IEC 61672-3:2006, for the environmental conditions under which the tests were performed. As public evidence was available, from an independent testing organisation responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2:2003, to demonstrate that the model of sound level meter fully conformed to the requirements in IEC 61672-1:2002, the sound level meter submitted for testing conforms to the class 1 requirements of IEC 61672-1:2002.

Previous Certificate	Dated	Certificate No.	Laboratory
	30 March 2021	UCRT21/1429	0653

This cerificate is issued in accordance with the taboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior witten approval of the issuing laboratory.

CERTIFICATE OF CALIBRATION

Sound Level Meter Instruction manual and data used to adjust the sound levels indicated.

Accessories used or corrected for during calibration -
Extension Cable \& Wind Shield WS-15 Note - if a pre-amp extension cable is listed then it was used between the SLM and the pre-amp.

Environmental conditions during tests	Start	End		
Temperature	24.35	24.35	\pm	$0.30{ }^{\circ} \mathrm{C}$
Humidity	42.5	42.0	\pm	3.00 \%RH
Ambient Pressure	100.17	100.15	\pm	0.03 kPa

Response to associated Calibrator at the environmental conditions above.						
Initial indicated level\|	94.1	dB		Adjusted indicated level	94.0	dB
The uncertainty of the associated calibrator supplied with the sound level meter \pm	0.10	dB				

Self Generated Noise This test is currently not performed by this Lab.

Microphone instailed (if requested by customer) $=$ Less Than	N/A	dB	A Weighting
Uncertainty of the microphone installed self generated noise	N/A	dB	

Microphone replaced with electrical input device - \quad UR $=$ Under Range indicated

| Weighting | A | | C | | Z | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor $k=2$, providing a coverage probability of approximately 95%. The uncertainty evaluation has been carried out in accordance with UKAS requirements.
For the test of the frequency weightings as per paragraph 12. of IEC 61672-3:2006 the actual microphone free field response was used.
The acoustical frequency tests of a frequency weighting as per paragraph 11 of fEC 61672-3:2006 were carried out using an electrostatic actuator.

END

Additional Comments The results on this certificate only relate to the items callibrated as identified above.
None

CERTIFICATE OF CALIBRATION

0653
Date of Issue: 10 March 2022
Calihrated at R Certificate issumed hu"
Certificate Number: UCRT22/1353

Customer

Order No.
Description
Identification

Performance Class
Test Procedure

26006559
Sound Level Meter / Pre-amp / Microphone / Associated Calibrator
Manufacturer Instrument Type Serial No. / Version

Rion Sound Level Meter NL-52 01143532
Rion
Rion
Rion
Rion

TP 2.SLM 61672-3 TPS-49
Procedures from IEC 61672-3:2006 were used to perform the periodic tests.
Type Approved to IEC 61672-1:2002 YES Approval Number 21.21/13.02
If YES above there is public evidence that the SLM has successfully completed the applicable pattern evaluation tests of IEC 61672-2:2003
Date Received ANV Job No. UKAS22/03174
Date Calibrated 10 March 2022
The sound level meter submitted for testing has successfully completed the class 1 periodic tests of IEC 61672-3:2006, for the environmental conditions under which the tests were performed. As public evidence was available, from an independent testing organisation responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2:2003, to demonstrate that the model of sound level meter fully conformed to the requirements in IEC 61672-1:2002, the sound level meter submitted for testing conforms to the class 1 requirements of IEC 61672-1:2002.

Previous Certificate	Dated	Cerlificate No.	Laboratory
	30 March 2021	UCRT21/1425	0653

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

CERTIFICATE OF CALIBRATION

Certificate Number
UCRT22/1353
UKAS Accredited Calibration Laboratory No. 0653
Page 2 of 2 Pages

Sound Level Meter Instruction manual and data used to adjust the sound levels indicated.

Accessories used or corrected for during calibration - Extension Cable \& Wind Shield WS-15
Note - if a pre-amp extension cable is listed then it was used between the SLM and the pre-amp.

Environmental conditions during tests	Start	End		
Temperature	22.78	23.11	\pm	$0.30{ }^{\circ} \mathrm{C}$
Humidity	40.6	40.9	\pm	3.00 \%RH
Ambient Pressure	100.63	100.62	\pm	0.03 kPa

Response to associated Calibrator at the environmental conditions above.

Initial indicated level	94.0	dB		Adjusted indicated level	94.0
The uncertainty of the associated calibrator supplied with the sound level meter \pm	0.10	dB			

Self Generated Noise This test is currently not performed by this Lab.

Microphone instatled (if requested by customer) $=$ Less Than							N/A	dB	Weighting
Uncertainty of the microphone installed self generated noise \pm							N/A	dB	
Microphone replaced with electrical input device -					UR = Under Range indicated				
Weighting	A				C		Z		
	13.0	dB	UR	17.1	dB	UR	24.3	dB	UR
Uncertainty of the electrical self generated noise \pm							0.12	dB	

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor $k=2$, providing a coverage probability of approximately 95%. The uncertainty evaluation has been carried out in accordance with UKAS requirements.
For the test of the frequency weightings as per paragraph 12. of IEC 61672-3:2006 the actual microphone free field response was used.
The acoustical frequency tests of a frequency weighting as per paragraph 11 of IEC 61672-3:2006 were carried out using an electrostatic actuator.

END

Date of Issue: 22 April 2022
Calihrated at \& Certificate issued hv:

0653

CERTIFICATE OF CALIBRATION

Certificate Number: UCRT22/1560

Customer

Order No.
Description
Identification

Performance Class
Test Procedure

26006559
Sound Level Meter / Pre-amp / Microphone / Associated Calibrator
Manufacturer instrument Type Serial No./Version
Rion Sound Level Meter NL-52 01143533
Rion
Rion
Rion
Rion
1
TP 2.SLM 61672-3 TPS-49
Procedures from IEC 61672-3:2006 were used to perform the periodic tests.

Type Approved to IEC 61672-1:2002 YES Approval Number 21.21/13.02
If YES above there is public evidence that the SLM has successfully completed the applicable pattern evaluation tests of IEC 61672-2:2003
Date Received
20 April 2022
Date Calibrated
22 April 2022

The sound level meter submitted for testing has successfully completed the class 1 periodic tests of IEC $61672-3: 2006$, for the environmental conditions under which the tests were performed. As public evidence was available, from an independent testing organisation responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2:2003, to demonstrate that the model of sound level meter fully conformed to the requirements in IEC 61672-1:2002, the sound level meter submitted for testing conforms to the class 1 requirements of IEC 61672-1:2002.

Previous Certificate	Dated	Certificate No.	Laboratory
	30 March 2021	UCRT21/1426	0653

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the Sl system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Sound Level Meter Instruction manual and data used to adjust the sound levels indicated.

Accessories used or corrected for during calibration -
Extension Cable \& Wind Shield WS-15
Note - if a pre-amp extension cable is listed then it was used between the SLM and the pre-amp.

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor $k=2$, providing a coverage probability of approximately 95%. The uncertainty evaluation has been carried out in accordance with UKAS requirements.
For the test of the frequency weightings as per paragraph 12. of IEC 61672-3:2006 the actual microphone free field response was used.
The acoustical frequency tests of a frequency weighting as per paragraph 11 of IEC 61672-3:2006 were carried out using an electrostatic actuator.

END
Calibrated by:
Additional Comments The results on this cerificate only relate to the items calibrated as identified above.
None

CERTIFICATE OF CALIBRATION

Date of Issue: 22 April 2022
Calibrated at $\&$ Certificate issued by:

Certificate Number: UCRT22/1563

Order No.	26006559			
Description	Sound Level Meter / Pre-amp / Microphone / Associated Calibrator			
Identification	Manufacturer	instrument	Type	Serial No. / Version
	Rion	Sound Level Meter	NL-52	01121394
	Rion	Firmware		2.0
	Rion	Pre Amplifier	NH-25	21438
	Rion	Microphone	UC-59	17214
	Rion	Calibrator	NC-74	34494241
		Calibrator adaptor type if applicable		NC-74-002

Performance Class	1
Test Procedure	TP 2.SLM 61672-3 TPS-49
	Procedures from IEC 61672-3:2006 were used to perform the periodic tests.

Type Approved to IEC 61672-1:2002 YES Approval Number 21.21/13.02
If YES above there is public evidence that the SLM has successfully completed the applicable pattern evaluation tests of IEC 61672-2:2003

Date Received	20 April 2022	ANV Job No. UKAS22/04281
Date Calibrated	22 April 2022	

The sound level meter submitted for testing has successfully completed the class 1 periodic tests of IEC 61672-3:2006, for the environmental conditions under which the tests were performed. As public evidence was available, from an independent testing organisation responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2:2003, to demonstrate that the model of sound level meter fully conformed to the requirements in IEC 61672-1:2002, the sound level meter submitted for testing conforms to the class 1 requirements of IEC 61672-1:2002.

Previous Certificate	Dated	Certificate No.	Laboratory
	30 March 2021	UCRT21/1427	0653

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the Sl system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior writlen approval of the issuing laboratory.

CERTIFICATE OF CALIBRATION
UKAS Accredited Calibration Laboratory No. 0653
Page 2 of 2 Pages

Sound Level Meter Instruction manual and data used to adjust the sound levels indicated.

Accessories used or corrected for during calibration - Extension Cable \& Wind Shield WS-15
Note - if a pre-amp extension cable is listed then it was used between the SLM and the pre-amp.

Environmental conditions during tests	Start	End		
	Temperature	24.52	24.49	\pm
	Humidity	45.6	43.1	$\pm .30{ }^{\circ} \mathrm{C}$
	Ambient Pressure	99.75	99.68	$\pm .00 \% \mathrm{RH}$
		0.03 kPa		

Response to associated Calibrator at the environrnental conditions above.					
Initial indicated level	94.0	dB			
Adjusted indicated level	94.0	dB			
The uncertainty of the associated calibrator supplied with the sound level meter \pm	0.10	dB			

Self Generated Noise This test is currently not performed by this Lab.

Microphone installed (if requested by customer) = Less Than								dB	A Weighting
Uncertainty of the microphone installed self generated noise \pm								dB	
Microphone replaced with electrical input device -					UR = Under Range indicated				
Weighting	A			C			Z		
	11.5	dB	\|UR	15.5	1dB	UR	19.7	dB	UR
Unicertainty of the electrical self generated noise \pm								dB	

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor $k=2$, providing a coverage probability of approximately 95%. The uncertainty evaluation has been carried out in accordance with UKAS requirements.
For the test of the frequency weightings as per paragraph 12. of IEC 61672-3:2006 the actual microphone free field response was used.
The acoustical frequency tests of a frequency weighting as per paragraph 11 of IEC 61672-3:2006 were carried out using an electrostatic actuator.
END

Date of Issue: 19 April 2022

CERTIFICATE OF CALIBRATION

UKAS CALBRATION

0653

Certificate Number: UCRT22/1531

Order No.
Description
Identification

26010435
Sound Level Meter / Pre-amp / Microphone / Associated Calibrator

Manufacturer	Instrument		Type
Rion	Sound Level Meter	NL-52	Serial No. / Version
Rion	Firmware		00331829
Rion	Pre Amplifier	NH-25	2.0
Rion	Microphone	UC-59	21780
Rion	Calibrator	NC-74	21136
	Calibrator adaptor type if applicable	NC-74-002	

TP 2.SLM 61672-3 TPS-49
$\begin{array}{lrl}\text { Test Procedure } & \text { TP 2.SLM 61672-3 TPS-49 } \\ & \text { Procedures from IEC 61672-3:2006 were used to perform the periodic tests. } \\ & \text { Approval Number } 21.21 / 13.02\end{array}$
Type Approved to IEC 61672-1:2002 YES Approval Number $21.21 / 13.02$
If YES above there is public evidence that the SLM has successfully completed the applicable pattern evaluation tests of IEC 61672-2:2003

```
Date Received 13 April 2022 ANV Job No. UKAS22/04272
Date Calibrated 14 April }202
```

The sound level meter submitted for testing has successfully completed the class 1 periodic tests of IEC 61672-3:2006, for the environmental conditions under which the tests were performed. As public evidence was available, from an independent testing organisation responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2:2003, to demonstrate that the model of sound level meter fully conformed to the requirements in IEC 61672-1:2002, the sound level meter submitted for testing conforms to the class 1 requirements of IEC 61672-1:2002.

		Certificate No.	Laboratory
Previous Certificate	Dated	Narch 2021	UCRT21/1418
	29 Mabs	063	

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

CERTIFICATE OF CALIBRATION
UKAS Accredited Calibration Laboratory No. 0653

| Certificate Number
 UCRT22/1531 | |
| :--- | ---: | ---: | ---: |
| Page 2 of 2 | Pages |

Sound Level Meter Instruction manual and data used to adjust the sound levels indicated.

| SLM instruction manual title Sound Level Meter | NL-42/ $\mathrm{NL}-52$ |
| :--- | :--- | :---: |
| SLM instruction manual ref / issue | $11-03$ |
| SLM incer | |

SLM instruction manual source	$11-03$
Inter	

Case corrections available	N/A
Uncertainties of case corrections	Yes
	Yes

Source of case data	Manufacture
Wind screen corrections available	Yes

Uncertainties of wind screen corrections	Yes
	Yes

Source of wind screen data	Manufactu
Mic pressure to free field corrections	Yes
Uncertainties of Mic to F.F. corrections	Yes

Source of Mic to F.F. corrections Yes

Total expanded uncertainties within the requirements of IEC 61672-1:2002	Yes		
Specified or equivalent Calibrator	Specified		
Customer or Lab Calibrator	Lab Calibrator		
Calibrator adaptor type if applicable	NC-74-002		
Calibrator cal. date	24 March 2022		
Calibrator cert. number	UCRT22/1421		
Calibrator cal cert issued by	0653		
Calibrator SPL @ STP	94.03	dB	Calibration reference sound pressure level
Calibrator frequency	1002.05	Hz	Calibration check frequency
Reference level range	$25-130$	dB	

Accessories used or corrected for during calibration - Extension Cable \& Wind Shield WS-15
Note - if a pre-amp extension cable is listed then it was used between the SLM and the pre-amp.

Environmental conditions during tests					

Response to associated Calibrator at the environmental conditions above.

| Initial indicated level 94.0 dB | | Adjusted indicated level | 94.0 | dB |
| :---: | :---: | :---: | :---: | :--- | :--- |
| The uncertainty of the associated calibrator supplied with the sound level meter \pm | 0.10 | dB | | |

Self Generated Noise This test is currently not performed by this Lab.

Microphone installed (if requested by customer) $=$ Less Than	N/A	dB
Uncertainty of the microphone installed self generated noise \pm	N/A	dB

Microphone replaced with electrical input device - UR = Under Range indicated

Uncertainty of the electrical self generated noise \pm
The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor $k=2$, providing a coverage probability of approximately 95%. The uncertainty evaluation has been carried out in accordance with UKAS requirements.
For the test of the frequency weightings as per paragraph 12. of IEC 61672-3:2006 the actual microphone free field response was used.
The acoustical frequency tests of a frequency weighting as per paragraph 11 of IEC 61672-3:2006 were carried out using an electrostatic actuator.

END
Additional Comments The results on this certificate only relate to the items calibrated as identified above.
Prior to calibration, the instrument's microphone has been replaced and the sound level meter has been realigned.

CERTIFICATE
OF
CALIBRATION

Date of Issue: 21 August 2023

Certificate Number: UCRT23/2091

CUSTOMER

ORDER No 20167403
Job No UKAS23/08579

DATE OF RECEIPT 17 August 2023
PROCEDURE Procedure TP 1 Calibration of Sound Calibrators

IDENTIFICATION Sound Calibrator 01dB type CAL21 serial number 34134164(2013) with one-inch housing and adapter type BAC21 for half-inch microphone

CALIBRATED ON 21 August 2023
PREVIOUS Calibrated on 13 May 2022, Certificate No. UCRT22/1649 issued by
CALIBRATION this laboratory.

[^1]
MEASUREMENTS

The sound pressure level generated by the Sound Calibrator in its half-inch configuration was measured using a B\&K type 4134 microphone with the protective grid in position. The microphone sensitivity was traceable to National Standards.

RESULTS

The mean level of the calibrator output, corrected to the standard atmospheric pressure of 101.3 kPa using manufacturers' data, was

$$
93.99 \pm 0.10 \mathrm{~dB} \text { rel } 20 \mu \mathrm{~Pa}
$$

The fundamental frequency of the sound output was $1001.95 \pm 0.12 \mathrm{~Hz}$, and its total distortion was $(2.57 \pm 0.17) \%$.

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor $k=2$, providing a coverage probability of approximately 95%. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

During the measurements the laboratory environmental conditions were:
Temperature: 23 to $24{ }^{\circ} \mathrm{C}$
Atmospheric pressure: 101.3 to 101.4 kPa
Relative humidity: 34 to 44%
The tests carried out were based on Annex B of BS EN 60942:2003, but with five determinations of sound pressure level, and limited to the above level(s) \& freq(s). This is a subset of the tests specified in Annex B of BS EN 60942:1998. The mean level, frequency and total distortion of the sound output as measured meet the Class 1 requirements of BS EN 60942:1998 for the environmental conditions under which the tests were performed. This does not imply that the sound calibrator meets this standard under any other conditions. However it has successfully undergone pattern evaluation to the earlier Standard IEC 942:1988

The results on this certificate only relate to the items calibrated as identified above.

CERTIFICATE OF
CALIBRATION

Date of Issue: 21 August 2023

Certificate Number: UCRT23/2092

CUSTOMER

ORDER No 20167403
Job No UKAS23/08579

DATE OF RECEIPT 17 August 2023
PROCEDURE Procedure TP 1 Calibration of Sound Calibrators

IDENTIFICATION Sound Calibrator 01dB type CAL21 serial number 34924015(2012) with one-inch housing and adapter type BAC21 for half-inch microphone

CALIBRATED ON 21 August 2023

PREVIOUS
CALIBRATION
Calibrated on 07 February 2022, Certificate No. UCRT22/1184 issued by this laboratory.

[^2]
MEASUREMENTS

The sound pressure level generated by the Sound Calibrator in its half-inch configuration was measured using a B\&K type 4134 microphone with the protective grid in position. The microphone sensitivity was traceable to National Standards.

RESULTS

The mean level of the calibrator output, corrected to the standard atmospheric pressure of 101.3 kPa using manufacturers' data, was

$$
94.08 \pm 0.10 \mathrm{~dB} \text { rel } 20 \mu \mathrm{~Pa}
$$

The fundamental frequency of the sound output was $1002.21 \pm 0.12 \mathrm{~Hz}$, and its total distortion was $(1.58 \pm 0.11) \%$.

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor $k=2$, providing a coverage probability of approximately 95%. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

During the measurements the laboratory environmental conditions were:
Temperature: 24 to $25{ }^{\circ} \mathrm{C}$
Atmospheric pressure: 101.3 to 101.4 kPa
Relative humidity: 37 to 48%
The tests carried out were based on Annex B of BS EN 60942:2003, but with five determinations of sound pressure level, and limited to the above level(s) \& freq(s). This is a subset of the tests specified in Annex B of BS EN 60942:1998. The mean level, frequency and total distortion of the sound output as measured meet the Class 1 requirements of BS EN 60942:1998 for the environmental conditions under which the tests were performed. This does not imply that the sound calibrator meets this standard under any other conditions. However it has successfully undergone pattern evaluation to the earlier Standard IEC 942:1988

The results on this certificate only relate to the items calibrated as identified above.

Date of Issue: 21 October 2021
Calibrated at \& Certificate issued bv:

Certificate Number: UCRT21/2301

ORDER No 20134892

DATE OF RECEIPT 18 October 2021

PROCEDURE Calibration Engineer's Handbook, section 25: periodic testing of sound level meters to IEC 61672-3:2006 (BS EN 61672-3:2006) as modified by UKAS TPS 49 Edition 2:June 2009

IDENTIFICATION Sound level meter 01dB type FUSION serial No 10796 connected via an extension lead type RAL135-10M and preamplifier type PRE 22 serial No 10882 to a half-inch microphone type GRAS 40CE serial No 207588 fitted with a 'DMK01' weatherproof outdoor windshield including nosecone type RA 0208. Associated calibrator 01dB type CAL21 serial No 34254632(2015) with a one-inch housing and adapter type BAC21 for half-inch microphone.
CALIBRATED ON 21 October 2021 CALIBRATION

PREVIOUS Calibrated on 29 August 2019, Certificate No. UCRT19/1943 issued by this laboratory.

[^3]The sound level meter was set up using the type CAL21 sound calibrator supplied; it was set to frequency weighting A, and initially read 94.0 dB . It was then adjusted to read 93.8 dB (corresponding to 93.8 dB at standard atmospheric pressure). This reading was derived from Calibration Certificate no. UCRT21/2295 supplied by this laboratory and manufacturers' information on the free-field response of the sound level meter when fitted with the windshield. The calibration check frequency was 1 kHz .

Procedures from IEC 61672-3:2006 (BS EN 61672-3:2006) as modified by UKAS TPS 49 Edition 2:June 2009 were used to perform the periodic tests.

RESULTS

The sound level meter submitted for testing has successfully completed the class 1 periodic tests of IEC 616723:2006 (BS EN 61672-3:2006), for the environmental conditions under which the tests were performed. As public evidence was available, from an independent testing organization responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2 : 2003 (BS EN 61672-2: 2003), to demonstrate that the model of sound level meter fully conformed to the requirements in IEC 61672-1: 2002 (BS EN 61672-1: 2003), the sound level meter submitted for testing conforms to the class 1 requirements of IEC 61672-1:2002 (BS EN 61672-1 2003).

The self-generated noise recorded with the microphone replaced by the electrical input device was:

$$
14.5 \mathrm{~dB}(\mathrm{~A}) \quad 15.2 \mathrm{~dB}(\mathrm{C}) \quad 18.1 \mathrm{~dB}(\mathrm{Z})
$$

The environmental conditions recorded at the start and end of testing were:
Start: 22 to $23{ }^{\circ} \mathrm{C}, 31$ to $41 \% \mathrm{RH}$ and 100.1 to 100.2 kPa
End: 24 to $25{ }^{\circ} \mathrm{C}$, 38 to 48% RH and 100.1 to 100.2 kPa

Technical information including adjustment data specified in the manufacturers' User Manual DOC1131-Feb 2017 J with further clarification from 01 dB has been used to carry out this verification. These data include manufacturerspecified uncertainties for case reflections and windshield, but NOT for the microphone response.

Publicly-available evidence has been found that this configuration of the 01dB FUSION sound level meter design has successfully undergone pattern evaluation in accordance with IEC 61672-2:2002 (BS EN 61672-2:2003) by Physikalisch-Technische Bundesanstalt (PTB), an independent testing organisation responsible for pattern approvals.

All measurement data are held at ANV Measurement Systems for a period of at least six years.

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor $\boldsymbol{k}=\mathbf{2}$, providing a coverage probability of approximately 95%. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

CERTIFICATE OF CALIBRATION

UKAS ACCREDITED CALIBRATION LABORATORY No 0653

NOTES

Any opinions or interpretations which may be expressed in the following notes are not UKAS Accredited.

1 The high pass filter was set to 10 Hz , the mic correction to 90° and the nosecone usage to "Yes".

2 No suitable microphone frequency response information was supplied with the instrument. It was therefore measured by this laboratory using the electrostatic actuator method. This response in isolation is not UKAS accredited.

3 The instrument was running application firmware version 2.34 and metrology firmware version 2.10 on hardware version LIS006E

4 These periodic tests are valid ONLY for the instrument configuration shown on page 1 of this certificate and for 90° incidence of sound on the microphone.

5 When set up to read correctly in response to the sound calibrator, the sound level meter stored a calibration correction of 0.32 dB and a microphone sensitivity of $37.5 \mathrm{mV} / \mathrm{Pa}$

6 Typical case reflection factors (for the DMK01 unit) specified by the manufacturer have been used for this verification.

The results on this certificate only relate to the items calibrated as identified above.

CERTIFICATE OF CALIBRATION

Certificate Number: UCRT21/2313

CUSTOMER

ORDER No
20134892
Job No UKAS21/10684
DATE OF RECEIPT 18 October 2021

PROCEDURE Calibration Engineer's Handbook section 3: verification of sound level meters to BS 7580:Part 1:1997

IDENTIFICATION Sound level meter 01dB type Blue Solo (Master) serial No 61331 connected via a RAL122-10m extension lead and preamplifier type PRE21S serial No 14575 to a half-inch microphone type MCE212 serial No 92344. Associated calibrator Norsonic type 1251 serial No 31460 with a one-inch housing and adapter type 1443 for half-inch microphone.

CALIBRATED ON 22 October 2021
PREVIOUS Calibrated on 03 May 2019 Certificate No. UCRT19/1544 issued by CALIBRATION this laboratory.

[^4]The sound level meter was set to frequency weighting A and adjusted to read 114.0 dB (corresponding to 114.0 dB at standard atmospheric pressure) in response to the sound calibrator supplied. This reading was derived from the Calibration Certificate No. UCRT21/2292 supplied by this laboratory and manufacturers' information on the free-field response of the sound level meter .

The sound level meter was then tested, and its overall sensitivity adjusted, in accordance with clause 5 of BS 7580:Part 1:1997 **

The acoustic calibration at 1 kHz specified in subclause 5.6 .1 of the standard was performed by application of a standard sound calibrator, whilst the tests at 125 Hz and 8 kHz (subclause 5.6.2) were performed by the electrostatic actuator method.

At the end of the test, the sound calibrator was reapplied to the sound level meter and the meter reading was recorded. The final sensitivity setting in calibration mode was -0.3 dB .

RESULTS

The sound level meter was found to conform to BS 7580:Part 1:1997 ** for a type 1 meter.
The self-generated noise recorded in the test specified in subclause 5.5 .2 was:
$9.2 \mathrm{~dB}(\mathrm{~A})$
8.0 dB (B)
$9.5 \mathrm{~dB}(\mathrm{C})$
13.8 dB (Lin)

The sound level meter reading obtained at the end of the test in response to the sound calibrator was 114.0 dB (corresponding to 114.0 dB at standard atmospheric pressure). This reading, corrected for ambient pressure, should be used henceforth to set up the sound level meter for field use.
The expanded level uncertainty of the Laboratory's 1 kHz sound calibrator used during this verification is $\pm 0.10 \mathrm{~dB}$; that of the calibrator supplied with the sound level meter is $\pm 0.10 \mathrm{~dB}$.

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor $\boldsymbol{k}=\mathbf{2}$, providing a coverage probability of approximately 95%. The uncertainty evaluation has been carried out in accordance with UKAS requirements.
All measurement data are held at ANV Measurement Systems for a period of at least six years.
The case reflection factors have been taken as zero, since an extension lead has been used for this verification.
The linearity range and primary indicator range have been obtained from the manufacturer, and are stated to cover the entire measurement range of the instrument, $20-137 \mathrm{~dB}$, as given in the handbook (dated 18 June 2003). The maximum level for signals of crest factor 3 has been interpreted from the handbook as $130 \mathrm{~dB}(\mathrm{~A})$.

The 01dB Solo sound level meter design has successfully undergone pattern evaluation at Physikalisch-Technische Bundesanstalt (PTB). It was found to meet the requirements of BS EN 60651* and BS EN 60804* and was granted pattern approval as a Type 1 sound level meter.

No component of uncertainty for manufacturer-specified corrections has been included in the uncertainty budget and, in accordance with Amendment No 1 to BS 7580:Part 1:1997 ** the measured values obtained during the verification have not been extended by any measurement uncertainty when assessing conformance to the standard.

Conformance as indicated above to BS 7580:Part 1:1997 indicates that the instrument conforms with the relevant accuracy requirements of the testing standard and the expanded measurement uncertainties ($k=2$ for approximately 95% coverage probability) are no greater in magnitude than the accuracy requirements defined in BS 7580:Part 1:1997.

CERTIFICATE OF CALIBRATION

UKAS ACCREDITED CALIBRATION LABORATORY No 0653
Page 3 of 3 Pages

NOTES

*1 BS EN 60651:1994 and BS EN 60804:1994 were formerly numbered BS 5969:1981 and BS 6698:1986 respectively.
**2 BS 7580:Part 1:1997 was formerly numbered BS 7580:1992.
3 No suitable microphone frequency response information was supplied with the instrument. It was therefore measured by this laboratory using the electrostatic actuator method. This response in isolation is not UKAS accredited.

4 The instrument firmware version was 1.401 272601107

5 The verification was carried out in $L_{p} / L_{e q}$ SLM mode only, and may not be valid for any other mode.

6 The frequency weighting designated Z in the meter has been taken as equivalent to Lin weighting of BS EN 60651:1994.

7 The foam windshield supplied with the instrument was not used or taken into account during the verification.

8 Any opinions or interpretations which may be expressed in these notes are not UKAS Accredited.

Date of Issue: 17 May 2023
Calibrated_at \& Certificateissued bv:

Certificate Number: UCRT23/1674

CUSTOMER

ORDER No 20161234
Job No UKAS23/05334

DATE OF RECEIPT 11 May 2023
PROCEDURE Calibration Engineer's Handbook, section 25: periodic testing of sound level meters to IEC 61672-3:2006 (BS EN 61672-3:2006) as modified by UKAS TPS 49

IDENTIFICATION Sound level meter 01dB type DUO serial No 10594 connected via an extension lead type RAL135-10M and preamplifier type PRE 22 serial No 1507076 to a half-inch microphone type GRAS 40CD serial No 224313 fitted with a 'DMK01' weatherproof outdoor windshield including nosecone type RA 0208. Associated calibrator 01dB type CAL21 serial No 34924020(2012) with a one-inch housing and adapter type BAC21 for half-inch microphone.
CALIBRATED ON 17 May 2023
PREVIOUS Calibrated on 13 April 2021, Certificate No. UCRT21/1488 issued by CALIBRATION

[^5]The sound level meter was set up using the type CAL21 sound calibrator supplied; it was set to frequency weighting A, and initially read 94.1 dB . It was then adjusted to read 93.9 dB (corresponding to 93.9 dB at standard atmospheric pressure). This reading was derived from Calibration Certificate no. UCRT23/1654 supplied by this laboratory and manufacturers' information on the free-field response of the sound level meter when fitted with the windshield. The calibration check frequency was 1 kHz .

Procedures from IEC 61672-3:2006 (BS EN 61672-3:2006) as modified by UKAS TPS 49 were used to perform the periodic tests.

RESULTS

The sound level meter submitted for testing has successfully completed the class 1 periodic tests of IEC 616723:2006 (BS EN 61672-3:2006), for the environmental conditions under which the tests were performed. As public evidence was available, from an independent testing organization responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2 : 2003 (BS EN 61672-2: 2003), to demonstrate that the model of sound level meter fully conformed to the requirements in IEC 61672-1: 2002 (BS EN 61672-1: 2003), the sound level meter submitted for testing conforms to the class 1 requirements of IEC 61672-1:2002 (BS EN 61672-1 2003).

The self-generated noise recorded with the microphone replaced by the electrical input device was:

$$
11.8 \mathrm{~dB}(\mathrm{~A}) \quad 13.4 \mathrm{~dB}(\mathrm{C}) \quad 18.2 \mathrm{~dB}(\mathrm{Z})
$$

The environmental conditions recorded at the start and end of testing were:
Start: 22 to $23{ }^{\circ} \mathrm{C}, 49$ to $59 \% \mathrm{RH}$ and 101.7 to 101.8 kPa
End: 22 to $23{ }^{\circ} \mathrm{C}, 48$ to 58% RH and 101.7 to 101.8 kPa
Technical information including adjustment data specified in the manufacturers' User Manual DOC1112-May 2015 H with further clarification from 01 dB has been used to carry out this verification. These data include manufacturerspecified uncertainties for case reflections and windshield, but NOT for the microphone response.

Publicly-available evidence has been found that this configuration of the 01 dB DUO sound level meter design has successfully undergone pattern evaluation in accordance with IEC 61672-2:2002 (BS EN 61672-2:2003) by Physikalisch-Technische Bundesanstalt (PTB), an independent testing organisation responsible for pattern approvals.

All measurement data are held at ANV Measurement Systems for a period of at least six years.

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor $\boldsymbol{k}=\mathbf{2}$, providing a coverage probability of approximately 95%. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

CERTIFICATE OF CALIBRATION

UKAS ACCREDITED CALIBRATION LABORATORY No 0653

NOTES

Any opinions or interpretations which may be expressed in the following notes are not UKAS Accredited.

1 The high pass filter was set to 10 Hz , the mic correction to 90° and the nosecone usage to "Yes".

2 No suitable microphone frequency response information was supplied with the instrument. It was therefore measured by this laboratory using the electrostatic actuator method. This response in isolation is not UKAS accredited.

3 The instrument was running application firmware version 2.49 and metrology firmware version 2.12 on hardware version LIS1005G

4 These periodic tests are valid ONLY for the instrument configuration shown on page 1 of this certificate and for 90° incidence of sound on the microphone.

5 When set up to read correctly in response to the sound calibrator, the sound level meter stored a calibration correction of 0.4 dB and a microphone sensitivity of $49.54 \mathrm{mV} / \mathrm{Pa}$

6 Typical case reflection factors (for the DMK01 unit) specified by the manufacturer have been used for this verification.

The results on this certificate only relate to the items calibrated as identified above.

Date of Issue: 18 May 2023
Calibrated at \& Certificate issued bv:

CUSTOMER
Certificate Number: UCRT23/1677

ORDER No 20161234 Job No UKAS23/05333

DATE OF RECEIPT 11 May 2023
PROCEDURE Calibration Engineer's Handbook, section 25: periodic testing of sound level meters to IEC 61672-3:2006 (BS EN 61672-3:2006) as modified by UKAS TPS 49

IDENTIFICATION Sound level meter 01dB type DUO serial No 10616 connected via an extension lead type RAL135-10M and preamplifier type PRE 22 serial No 10180 to a half-inch microphone type GRAS 40CD serial No 154423 fitted with a 'DMK01' weatherproof outdoor windshield including nosecone type RA 0208. Associated calibrator 01dB type CAL21 serial No 34924053(2012) with a one-inch housing and adapter type BAC21 for half-inch microphone.
CALIBRATED ON 18 May 2023
PREVIOUS Calibrated on 01 June 2021, Certificate No. UCRT21/1686 issued by CALIBRATION

[^6]The sound level meter was set up using the type CAL21 sound calibrator supplied; it was set to frequency weighting A, and initially read 94.0 dB . It was then adjusted to read 93.9 dB (corresponding to 93.9 dB at standard atmospheric pressure). This reading was derived from Calibration Certificate no. UCRT23/1652 supplied by this laboratory and manufacturers' information on the free-field response of the sound level meter when fitted with the windshield. The calibration check frequency was 1 kHz .

Procedures from IEC 61672-3:2006 (BS EN 61672-3:2006) as modified by UKAS TPS 49 were used to perform the periodic tests.

RESULTS

The sound level meter submitted for testing has successfully completed the class 1 periodic tests of IEC 616723:2006 (BS EN 61672-3:2006), for the environmental conditions under which the tests were performed. As public evidence was available, from an independent testing organization responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2 : 2003 (BS EN 61672-2: 2003), to demonstrate that the model of sound level meter fully conformed to the requirements in IEC 61672-1: 2002 (BS EN 61672-1: 2003), the sound level meter submitted for testing conforms to the class 1 requirements of IEC 61672-1:2002 (BS EN 61672-1 2003).

The self-generated noise recorded with the microphone replaced by the electrical input device was:

$$
12.1 \mathrm{~dB}(\mathrm{~A}) \quad 14.3 \mathrm{~dB}(\mathrm{C}) \quad 18.9 \mathrm{~dB}(\mathrm{Z})
$$

The environmental conditions recorded at the start and end of testing were:
Start: 21 to $23{ }^{\circ} \mathrm{C}, 47$ to $57 \% \mathrm{RH}$ and 101.8 to 101.9 kPa
End: 22 to $23{ }^{\circ} \mathrm{C}, 45$ to 55% RH and 101.7 to 101.8 kPa
Technical information including adjustment data specified in the manufacturers' User Manual DOC1112-May 2015 H with further clarification from 01 dB has been used to carry out this verification. These data include manufacturerspecified uncertainties for case reflections and windshield, but NOT for the microphone response.

Publicly-available evidence has been found that this configuration of the 01 dB DUO sound level meter design has successfully undergone pattern evaluation in accordance with IEC 61672-2:2002 (BS EN 61672-2:2003) by Physikalisch-Technische Bundesanstalt (PTB), an independent testing organisation responsible for pattern approvals.

All measurement data are held at ANV Measurement Systems for a period of at least six years.

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor $\boldsymbol{k}=\mathbf{2}$, providing a coverage probability of approximately 95%. The uncertainty evaluation has been carried out in accordance with UKAS requirements.

CERTIFICATE OF CALIBRATION

UKAS ACCREDITED CALIBRATION LABORATORY No 0653

NOTES

Any opinions or interpretations which may be expressed in the following notes are not UKAS Accredited.

1 The high pass filter was set to 10 Hz , the mic correction to 90° and the nosecone usage to "Yes".

2 No suitable microphone frequency response information was supplied with the instrument. It was therefore measured by this laboratory using the electrostatic actuator method. This response in isolation is not UKAS accredited.

3 The instrument was running application firmware version 2.34 and metrology firmware version 2.10 on hardware version 3F2D3D

4 These periodic tests are valid ONLY for the instrument configuration shown on page 1 of this certificate and for 90° incidence of sound on the microphone.

5 When set up to read correctly in response to the sound calibrator, the sound level meter stored a calibration correction of 0.17 dB and a microphone sensitivity of $49 \mathrm{mV} / \mathrm{Pa}$

6 Typical case reflection factors (for the DMK01 unit) specified by the manufacturer have been used for this verification.

The results on this certificate only relate to the items calibrated as identified above.

CERTIFICATE
OF
CALIBRATION

Date of Issue: 23 September 2022
Calibrated at \& Certificate issued bv:

Certificate Number: UCRT22/2136

CUSTOMER

ORDER No
20151187
Job No UKAS22/09596
DATE OF RECEIPT 22 September 2022
PROCEDURE Calibration Engineer's Handbook section 3: verification of sound level meters to BS 7580:Part 1:1997

IDENTIFICATION Sound level meter 01dB type Black Solo (Master) serial No 65806 connected via a RAL122-10M extension lead and preamplifier type PRE21S serial No 16461 to a half-inch microphone type MCE212 serial No 166412. Associated calibrator 01dB type CAL21 serial No 34323904(2012) with a one-inch housing and adapter type BAC21 for half-inch microphone.

CALIBRATED ON 23 September 2022
PREVIOUS Calibrated on 20 December 2021 Certificate No. UCRT21/2541
CALIBRATION issued by this laboratory.

[^7]The sound level meter was set to frequency weighting A and adjusted to read 93.8 dB (corresponding to 93.8 dB at standard atmospheric pressure) in response to the sound calibrator supplied. This reading was derived from the Calibration Certificate No. UCRT22/2131 supplied by this laboratory and manufacturers' information on the free-field response of the sound level meter .

The sound level meter was then tested, and its overall sensitivity adjusted, in accordance with clause 5 of BS 7580:Part 1:1997 **

The acoustic calibration at 1 kHz specified in subclause 5.6 .1 of the standard was performed by application of a standard sound calibrator, whilst the tests at 125 Hz and 8 kHz (subclause 5.6.2) were performed by the electrostatic actuator method.

At the end of the test, the sound calibrator was reapplied to the sound level meter and the meter reading was recorded. The final sensitivity setting in calibration mode was 0.4 dB .

RESULTS

The sound level meter was found to conform to BS 7580:Part 1:1997 ** for a type 1 meter.
The self-generated noise recorded in the test specified in subclause 5.5 .2 was:
$9.7 \mathrm{~dB}(\mathrm{~A})$
$8.5 \mathrm{~dB}(\mathrm{~B})$
$9.8 \mathrm{~dB}(\mathrm{C})$
$14.5 \mathrm{~dB}(\mathrm{Lin})$

The sound level meter reading obtained at the end of the test in response to the sound calibrator was 93.8 dB (corresponding to 93.8 dB at standard atmospheric pressure). This reading, corrected for ambient pressure, should be used henceforth to set up the sound level meter for field use.
The expanded level uncertainty of the Laboratory's 1 kHz sound calibrator used during this verification is $\pm 0.10 \mathrm{~dB}$; that of the calibrator supplied with the sound level meter is $\pm 0.10 \mathrm{~dB}$.

The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor $\boldsymbol{k}=\mathbf{2}$, providing a coverage probability of approximately 95%. The uncertainty evaluation has been carried out in accordance with UKAS requirements.
All measurement data are held at ANV Measurement Systems for a period of at least six years.
The case reflection factors have been taken as zero, since an extension lead has been used for this verification.
The linearity range and primary indicator range have been obtained from the manufacturer, and are stated to cover the entire measurement range of the instrument, $20-137 \mathrm{~dB}$, as given in the handbook (dated 18 June 2003). The maximum level for signals of crest factor 3 has been interpreted from the handbook as $130 \mathrm{~dB}(\mathrm{~A})$.

The 01dB Solo sound level meter design has successfully undergone pattern evaluation at Physikalisch-Technische Bundesanstalt (PTB). It was found to meet the requirements of BS EN 60651* and BS EN 60804* and was granted pattern approval as a Type 1 sound level meter.

No component of uncertainty for manufacturer-specified corrections has been included in the uncertainty budget and, in accordance with Amendment No 1 to BS 7580:Part 1:1997 ** the measured values obtained during the verification have not been extended by any measurement uncertainty when assessing conformance to the standard.

Conformance as indicated above to BS 7580:Part 1:1997 indicates that the instrument conforms with the relevant accuracy requirements of the testing standard and the expanded measurement uncertainties ($k=2$ for approximately 95% coverage probability) are no greater in magnitude than the accuracy requirements defined in BS 7580:Part 1:1997.

CERTIFICATE OF CALIBRATION

UKAS ACCREDITED CALIBRATION LABORATORY No 0653
Page 3 of 3 Pages

NOTES

*1 BS EN 60651:1994 and BS EN 60804:1994 were formerly numbered BS 5969:1981 and BS 6698:1986 respectively.
**2 BS 7580:Part 1:1997 was formerly numbered BS 7580:1992.
3 No suitable microphone frequency response information was supplied with the instrument. It was therefore measured by this laboratory using the electrostatic actuator method. This response in isolation is not UKAS accredited.

4 The instrument firmware version was 1.405 272A 01107

5 The verification was carried out in $L_{p} / L_{e q}$ SLM mode only, and may not be valid for any other mode.

6 The frequency weighting designated Z in the meter has been taken as equivalent to Lin weighting of BS EN 60651:1994.

7 Any opinions or interpretations which may be expressed in these notes are not UKAS Accredited.

Annex B
 Baseline Monitoring Results

Page intentionally blank

HDD-01-NML1

Monitoring Position:
X: 500883
Y: 101633
What3Words:
Descended.spoon.tour
Location:
Climping
Duration:
27/03/2023 15:00 -
28/03/2023 13:15

Description of monitoring location

The Sound Level Meter (SLM) was deployed along the eastern boundary of a hedge bounding garden. The SLM was located approximately 2.5 m above ground in a freefield position, approximately 30 m from the closest acoustically reflective façade.

General observations

The noise environment noted during SLM deployment and collection was generally quiet, and typical of a rural location. Noise from distant road traffic movements, along with birdsong, sound of the waves from the sea to the south and noise from tractors in the nearby fields contributed to the overall noise environment.

Monitoring Position

Assessment Period		LAeq, ${ }^{\text {T }}$ (dB)	$L_{\text {A90, }}$ (dB) [mean average]	Total no. of 15-minute periods	Total no. of 15-minute periods affected by weather	Affected by weather \%
Construction daytime	$\begin{aligned} & \text { Monday - Sunday } \\ & 0700-1900 \end{aligned}$	49	42	88	2	2
Construction evenings	Monday - Sunday $1900-2300$	41	37			
Construction night-time	$\begin{aligned} & \text { Monday - Sunday } \\ & 2300-0700 \end{aligned}$	49	44			

)

HDD-02-NML2

Assessment Period	LAeq, (dB)	LA90,T (dB) average]	Total no. of 15-minute periods	Total no. of 15-minute periods affected by weather	Affected by weather \%	
Construction daytime	Monday - Sunday $0700-1900$	53	46	88		2

HDD-07-NML5

Monitoring Description of monitoring
 Position:
 location

X: 502465
Y: 104611
What3Words share.tuck.living

Location:

Lyminster
The SLM was deployed along the northern boundary of an agricultural field directly to the west of Lyminster road, and to the north of Brookside Caravan Park. The SLM was located approximately 1.5 m above ground in a free-field position.

Duration:

16/11/2023 15:00
-17/11/2023
10:45

General observations

The noise environment noted during SLM deployment and collection was dominated by the traffic activity along A 284, and occasional aircrafts. Animal noise from the local dog activity in the area to the north, along with birdsong also contributed to the overall noise environment.

Assessment Period	LAeq, (dB)	LA90,T (dB) average]	Total no. of 15-minute periods	Total no. of 15-minute periods affected by weather	Affected by weather \%	
Construction daytime	Monday - Sunday $0700-1900$	50	44	80		3

HDD-18-NML14

Assessment Period	LAeq, (dB)	LA90,T (dB) [mean average]	Total no. of 15-minute periods	Total no. of 15-minute periods affected by weather	Affected by weather \%	
Construction daytime	Monday - Sunday $0700-1900$	68	52	80		9

HDD-22-NML18

Assessment Period		$\mathrm{L}_{\text {Aeq, }}(\mathrm{dB})$	La90,T (dB) [mean average]40		Total no. of 15-minute periods	Total no. of 15-minute periods affected by weather 1	Affected by weather \%
Constructio n daytime	Monday Sunday $0700-1900$			76			
Constructio n evenings	Monday Sunday $1900-2300$	37	32				
Constructio n night-time	Monday Sunday $2300-0700$	37	26				

HDD-23-NML19

Assessment Period	LAeq, (dB)	LA90,T (dB) [mean average]	Total no. of 15-minute periods	Total no. of 15-minute periods affected by weather	Affected by weather \%	
Construction daytime	Monday - Sunday $0700-1900$	56	40	92		4
Construction evenings	Monday - Sunday $1900-2300$	50	35			
Construction night-time	Monday - Sunday $2300-0700$	47	34			

)

HDD-24-NML20

Assessment Period	LAeq, (dB)	LA90, (dB) [mean average]	Total no. of 15-minute periods	Total no. of 15-minute periods affected by weather	Affected by weather \%	
Construction daytime	Monday - Sunday $0700-1900$	53	44	86		3

HDD-25-NML21

Monitoring Position:	Description of monitoring location	Monitoring Position
X: 518726	The SLM was deployed in the northwest corner of the	
Y: 117193	field. The SLM was located approximately 1.5 m above ground in a free-field position.	
What3Words: deflection.ticked.blotches	General observations	
Location: Horsham	The noise environment noted during SLM deployment and collection was generally quiet, and typical of a rural location. Noise from distant road traffic	
$\begin{aligned} & \text { Duration: } \\ & \text { 28/03/2023 13:30 - } \\ & \text { 29/03/2023 11:00 } \end{aligned}$	movements on the B2135, occasional aircraft noise and birdsong present.	

Assessment Period		$L_{\text {Aeq, }, T}$ (dB)	La90, ${ }^{\text {(dB) }}$ [mean average]	Total no. of 15-minute periods	Total no. of 15-minute periods affected by weather	Affected by weather \%
Construction daytime	Monday - Sunday $0700-1900$	50	42	86	2	2
Construction evenings	$\begin{aligned} & \text { Monday - Sunday } \\ & 1900-2300 \end{aligned}$	46	30			
Construction night-time	$\begin{aligned} & \text { Monday - Sunday } \\ & 2300-0700 \end{aligned}$	42	24			

HDD-26-NML22

Assessment Period	LAeq, (dB)	LA90, (dB) average]	Total no. of 15-minute periods	Total no. of 15-minute periods affected by weather	Affected by weather \%	
Construction daytime	Monday - Sunday $0700-1900$	57	46	89		2
Construction evenings	Monday - Sunday $1900-2300$	52	31			
Construction night-time	Monday - Sunday $2300-0700$	52	27			

HDD-27-NML23

Monitoring Position:	Description of monitoring location X: 521495
The SLM was deployed in the field to the north	
Y: 120240	of the nearby property. The SLM was located
What3Words:	approximately 2.5m above ground in a free-field position, about 1.5m away from the closest
refreshed.triads.flask	acoustically reflective façade.
Location:	General observations
Horsham	The noise environment noted during SLM
	deployment and collection was generally quiet,
Duration:	and typical of a rural location. Noise from distant road traffic movements on the A281,
28/03/2023 17:00 -	

Monitoring Position

Assessment Period		$L_{\text {Aeq, }}$ T (dB)	La90, (dB) [mean average]	Total no. of 15-minute periods	Total no. of 15-minute periods affected by weather	Affected by weather \%
Construction daytime	$\begin{aligned} & \text { Monday - Sunday } \\ & 0700-1900 \end{aligned}$	47	36	68	2	3
Construction evenings	$\begin{aligned} & \text { Monday - Sunday } \\ & 1900-2300 \end{aligned}$	38	26			
Construction night-time	$\begin{aligned} & \text { Monday - Sunday } \\ & 2300-0700 \end{aligned}$	40	21			

HDD-31-NML25

Assessment Period	LAeq, (dB)	LA90,T (dB) average]	Total no. of 15-minute periods	Total no. of 15-minute periods affected by weather	Affected by weather \%	
Construction daytime	Monday - Sunday $0700-1900$	51	47	93		2

)

HDD-34-NML28

Monitoring Position:	D
X: 506229	The SLM was deployed on a fencepost to the north
Y: 105876	east of the closest property. The SLM was located approximately 2.5 m above ground in a free-field
What3Words: maker.incorrect.renting	position, approximately 6 m from the closest acoustically reflective façade.
Location: Arun	General observations The noise environment noted during SLM
$\begin{aligned} & \text { Duration: } \\ & \text { 28/03/2023 12:30- } \\ & \text { 28/03/2023 10:00 } \end{aligned}$	deployment and collection was generally dominated by road traffic movements from the A27. Noise from a slight breeze through the trees and birdsong present. Potential dawn chorus, geese live in nearby pond to the south west. Roads were wet for the duration of the measurement.

Monitoring Position

Assessment Period		$L_{\text {Aeq, }}$ T (dB)	La90, (dB) [mean average]	Total no. of 15-minute periods	Total no. of 15-minute periods affected by weather	Affected by weather \%
Construction daytime	Monday - Sunday $0700-1900$	65	62	86	3	3
Construction evenings	$\begin{aligned} & \text { Monday - Sunday } \\ & 1900-2300 \end{aligned}$	59	53			
Construction night-time	$\begin{aligned} & \text { Monday - Sunday } \\ & 2300-0700 \end{aligned}$	54	38			

HDD-35-NML29

Assessment Period	LAeq, (dB)	LA90,T (dB) average]	Total no. of 15-minute periods	Total no. of 15-minute periods affected by weather	Affected by weather \%	
Construction daytime	Monday - Sunday $0700-1900$	63	59	88		1

)

HDD-32-NML26

Assessment Period	LAeq, (dB)	LA90,T (dB) average]	Total no. of 15-minute periods	Total no. of 15-minute periods affected by weather	Affected by weather \%	
Construction daytime	Monday - Sunday $0700-1900$	65	58	87	3	3
Construction evenings	Monday - Sunday $1900-2300$	62	49			
Construction night-time	Monday - Sunday $2300-0700$	59	38			

HDD-38-NML30

Monitoring Position:

X: 509555
Y: 108602

What3Words:

fluctuate.prelude.talker

Location:

Arun
Duration:
04/05/2023 13:30 -
05/05/2023 12:15
This monitoring position was originally used to represent receptors HDD12-E, HDD12-SE, but has been superseded by position TC-12-NML41 for daytime.

Description of monitoring location

The SLM was deployed on a. The SLM was located approximately 1.5 m above ground in a free-field position.

General observations

The noise environment noted during SLM deployment and collection was generally quiet, and typical of a rural location. Noise from bird song, distant road traffic breeze through foliage and occasional aircraft.

Monitoring Position

Assessment Period		LAeq, ${ }^{T}$ (dB)	La90,T (dB) [mean average]	Total no. of 15 minute periods	Total no. of 15 minute periods affected by weather	Affected by weather \%
Construction daytime	$\begin{aligned} & \text { Monday - Sunday } \\ & 0700-1900 \end{aligned}$	46*	40*	91	3	3
Construction evenings	$\begin{aligned} & \text { Monday - Sunday } \\ & 1900-2300 \end{aligned}$	43	35			
Construction night-time	Monday - Sunday $2300-0700$	45	31			
*Daytime superseded by TC-12-NML41						

TC12-NML41

Assessment Period	LAeq, (dB)	LA90, (dB) average]	Tmean	Total no. of 15-minute periods	Total no. of 15-minute periods affected by weather	Affected by weather \%
Construction daytime	Monday - Sunday $0700-1900$	57	35	11	0	0
Construction evenings	Monday - Sunday $1900-2300$	-	-			
Construction night-time	Monday - Sunday $2300-0700$	-	-			

CC-1-NML31

Assessment Period	LAeq, (dB)	LA90, (dB) average]	Tmean	Total no. of 15-minute periods	Total no. of 15-minute periods affected by weather	Affected by weather \%
Construction daytime	Monday - Sunday $0700-1900$	57	50	80		3
Construction evenings	Monday - Sunday $1900-2300$	52	44			
Construction night-time	Monday - Sunday $2300-0700$	51	40			

CC-3-NML32

Assessment Period	LAeq, (dB)	LA90,T (dB) average]	Total no. of 15-minute periods	Total no. of 15-minute periods affected by weather	Affected by weather \%	
Construction daytime	Monday - Sunday $0700-1900$	51	49	80	10	13
Construction evenings	Monday - Sunday $1900-2300$	47	45			
Construction night-time	Monday - Sunday $2300-0700$	43	41			

CC-5-NML34

Assessment Period	LAeq, (dB)	LA90, (dB) [mean average]	Total no. of 15-minute periods	Total no. of 15-minute periods affected by weather	Affected by weather \%	
Construction daytime	Monday - Sunday $0700-1900$	62	55	80	8	10
Construction evenings	Monday - Sunday $1900-2300$	56	45			
Construction night-time	Monday - Sunday $2300-0700$	53	33			

CA- 2- NML36

Assessment Period		$L_{\text {Aeq, }}$ (dB)	LA90,T (dB) [mean average]	Total no. of 15-minute periods	Total no. of 15-minute periods affected by weather	Affected by weather \%
Construction daytime	Monday - Sunday $0700-1900$	51	38	-	-	-
Construction evenings	$\begin{aligned} & \text { Monday - Sunday } \\ & 1900-2300 \end{aligned}$	-	-			
Construction night-time	$\begin{aligned} & \text { Monday - Sunday } \\ & 2300-0700 \end{aligned}$	-	-			

)

CA- 4- NML38
Monitoring Position:
X: 510480
Y: 113071
What 3 Words:
roadblock.massaged.locker
Location:
Sullington

Duration:
04/05/2023 18:00 -
04/05/2023 19:00

Description of monitoring location

The SLM was located approximately 1.5 m above ground in a free-field position.

General observations

The noise environment noted during the attended survey was generally quiet, and typical of a rural location. Noise from distant road traffic, occasional traffic using Barns Farm Lane, bird song, breeze through foliage and occasional aircraft.

Monitoring Position

Assessment Period		LAeq,T (dB)	Lago, (dB) [mean average]	Total no. of 15-minute periods	Total no. of 15-minute periods affected by weather	Affected by weather \%
Construction daytime	Monday - Sunday $0700-1900$	46	39	-	-	-
Construction evenings	Monday - Sunday $1900-2300$	-	-			
Construction night-time	Monday - Sunday $2300-0700$	-	-			

CA-5- NML39
Monitoring Position:
X: 518086
Y: 116221

What3Words:
blizzard.switched.blackouts
Location:
Ashurst
Duration:
04/05/2023 16:02 -
04/05/2023 17:02

Description of monitoring location

The SLM was located approximately 1.5 m above ground in a free-field position.

General observations

The noise environment noted during the attended survey was generally dominated by noise from road traffic on the B2135, occasional traffic going to Eaton Farm, bird song and occasional aircraft.

Monitoring Position

Assessment Period		$L_{\text {Aeq, }}(\mathrm{dB})$	$L_{\text {A90, }}$ (dB)			Affected by weather
Construction daytime	Monday Sunday $0700-1900$	57	38	-	-	-
Construction evenings	Monday Sunday $1900-2300$	-	-			
Construction night-time	Monday Sunday $2300-0700$	-	-			

CA-6- NML40

Assessment Period	LAeq, (dB)	LA90, (dB) average]		Total no. of 15-minute periods	Total no. of 15-minute periods affected by weather	Affected by weather \%
Construction daytime	Monday - Sunday $0700-1900$	59	47	-		-
Construction evenings	Monday - Sunday $1900-2300$	-				
Construction night-time	Monday - Sunday $2300-0700$	-	-			

CA- 7- NML41

Assessment Period	LAeq, (dB)	LA90, (dB) average]		Total no. of 15-minut periods	Total no. of 15-minute periods affected by weather	Affected by weather \%
Construction daytime	Monday - Sunday $0700-1900$	70	53	-		
Construction evenings	Monday - Sunday $1900-2300$	-	-			
Construction night-time	Monday - Sunday $2300-0700$	-	-			

CA- 8- NML42

Monitoring Position:
X: 519264
Y: 117856
What3Words:
necklace.spud.drifting
Location:
West Grinstead
Duration:
27/03/2023 16:41 -
27/03/2023 17:47

Description of monitoring location

The SLM was located approximately 1.5 m above ground in a free-field position.

General observations

The noise environment noted during the attended survey was generally dominated by road traffic noise from the B2135. Noise from bird song and occasional aircraft.

Monitoring Position

Assessment Period	LAeq, (dB)	LA90, (dB) average]		Total no. of 15-minute periods	Total no. of 15-minute periods affected by weather	Affected by weather \%
Construction daytime	Monday - Sunday $0700-1900$	47	41	-		
Construction evenings	Monday - Sunday $1900-2300$	-	-			
Construction night-time	Monday - Sunday $2300-0700$	-	-			

OP-NML1

Assessment Period	LAeq, \mathbf{T} (dB)	LA90, (dB) [mean average]	Total no. of 15-minute periods	Total no. of 15-minute periods affected by weather	Affected by weather \%	
Operational daytime	Monday - Sunday $0700-1900$	61	55	679		6

OP-NML2

Assessment Period	LAeq, (dB)	LA90, (dB) [mean average]	Total no. of 15-minute periods	Total no. of 15-minute periods affected by weather	Affected by weather \%	
Operational daytime	Monday - Sunday $0700-1900$	48	38	679	6	1

OP-NML3

Assessment Period	LAeq, $\mathbf{T}(\mathrm{dB})$	LA90,T (dB) [mean average]	Total no. of 15-minute periods	Total no. of 15- minute periods affected by weather	Affected by weather \%	
Operational daytime	Monday - Sunday $0700-1900$	47	40	677	4	<1
Operational evenings	Monday - Sunday $1900-2300$	40	36			
Operational night-time	Monday - Sunday $2300-0700$	46	32			

OP-NML4

Monitoring Position: $\begin{aligned} & \text { X: } 522798 \\ & \text { Y: } 122562 \end{aligned}$	Description of monitoring location The SLM was located approximately 1.5 m above ground in a free-field position.	Monitoring Position
What3Words: petty.repeating.food Location: Oakendene Manor, Bolney Road, RH13 8AZ Duration: 6/02/2023 13:45 - 13/02/2023 07:28	General observations The noise environment noted during the attended survey was generally dominated by distant road traffic noise from the A272. With occasional noise from the industrial estate approx. 200 m west, bird song and occasional aircraft.	2f \%

| Assessment Period | LAeq, $\mathbf{T}(\mathrm{dB})$ | LA90, (dB)
 [mean
 average] | Total no. of
 15-minute
 periods | Total no. of 15-minute
 periods affected by
 weather | Affected by weather
 $\%$ | |
| :--- | :--- | :---: | :--- | :---: | :---: | :---: | :---: |
| Operational
 daytime | Monday - Sunday
 $0700-1900$ | 51 | 47 | 647 | 3 | <1 |
| Operational
 evenings | Monday - Sunday
 $1900-2300$ | 49 | 41 | | | |
| Operational
 night-time | Monday - Sunday
 $2300-0700$ | 47 | 32 | | | |

Page intentionally blank

Page intentionally blank

[^0]: This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

[^1]: This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

[^2]: This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

[^3]: This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

[^4]: This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

[^5]: This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

[^6]: This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

[^7]: This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

